Skip to main content
Log in

Flexural Behavior and Capacity of Composite Concrete-Steel Beams Using Various Shear Connectors

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Composite-reinforced concrete/steel beams (CRCSB) have been commonly used due to the ability of composite sections to carry high loads with minimal material. Despite the considerable improvement made in the last decade to understand the effect of shear connectors between concrete and steel on CRCSB response, there is a lack in understanding how these connectors affect the cracks propagation and widened along the slab. Herein, an experimental investigation focusses on the behavior of CRCSB under flexure was presented. This paper aimed to investigate two main aspects: the effect of bearing stiffeners and shear connectors shapes on the failure mechanism and ultimate capacity of the CRCSB. Accordingly, five full-scale CRCSB were fabricated and evaluated under four-point bending. Four types of connecters are used (bolts, C-channels, angles and angles synergized by bolts). To precisely predict the number of shear connectors and maximum shear resistance of CRCSB, a new factor \({\gamma }_{SA}\) was adopted based on the theoretical and experimental findings. The observed cracks, strain, failure mechanism and load–displacement were recorded during the test and a qualitative comparison was presented. Experimental results revealed that the shear connector shape was the key factor influencing the concrete part performance. The failure of specimens was dominant by the strut and tie mechanism in pure bending zone. The CRCSB with bolts experienced the highest loads capacity while the two CRCSB had angles or angles and bolts as shear connectors gained nearly the same toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. AASHTO: AASHTO LRFD bridge desing Specification. American Association of State Highway and Transportation Officials, Washington, DC, USA (2012)

  2. Ataei, A.; Zeynalian, M.: A study on structural performance of deconstructable bolted shear connectors in composite beams. Structures. 29, 519–533 (2021). https://doi.org/10.1016/j.istruc.2020.11.065

    Article  Google Scholar 

  3. EN1994-1-1:2004, Eurocode-4: design of composite steel and concrete structures Part 1.1. European Committee for Standardization (CEN), Brussels, Belgium (2004)

  4. Baran, E.; Topkaya, C.: Behavior of steel-concrete partially composite beams with channel type shear connectors. J. Constr. Steel Res. 97, 69–78 (2014). https://doi.org/10.1016/j.jcsr.2014.01.017

    Article  Google Scholar 

  5. Salih, M.N.A.; Tahir, M.M.; Mohammad, S.; Ahmad, Y.; Shek, P.N.; Abraham, A.; Firdaus, M.: Khadavi: bending experiment on a novel configuration of composite system using rebar as shear connectors with partially encased cold-formed steel built-up beams. Mater. Today Proc. 39, 999–1005 (2019). https://doi.org/10.1016/j.matpr.2020.04.647

    Article  Google Scholar 

  6. Dai, X.; Lam, D.; Sheehan, T.; Yang, J.; Zhou, K.: Effect of dowel shear connector on performance of slim-floor composite shear beams. J. Constr. Steel Res. 173, 106243 (2020). https://doi.org/10.1016/j.jcsr.2020.106243

    Article  Google Scholar 

  7. Dias, J.V.F.; Carvalho, H.; Rodrigues, F.C.; Maia, K.A.F.P.; Caldas, R.B.: Experimental and numerical study on CFS composite beams with riveted shear connectors. Structures 33, 737–747 (2021). https://doi.org/10.1016/j.istruc.2021.04.058

    Article  Google Scholar 

  8. Ataei, A.; Bradford, M.A.; Liu, X.: Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors. Eng. Struct. 114, 1–13 (2016). https://doi.org/10.1016/j.engstruct.2015.10.041

    Article  Google Scholar 

  9. Huo, J.; Wang, H.; Li, L.; Liu, Y.: Experimental study on impact behaviour of stud shear connectors in composite beams with profiled steel sheeting. J. Constr. Steel Res. 161, 436–449 (2019). https://doi.org/10.1016/j.jcsr.2018.04.029

    Article  Google Scholar 

  10. Yang, T.; Liu, S.; Qin, B.; Liu, Y.: Experimental study on multi-bolt shear connectors of prefabricated steel-concrete composite beams. J. Constr. Steel Res. 173, 106260 (2020). https://doi.org/10.1016/j.jcsr.2020.106260

    Article  Google Scholar 

  11. Anju, T.; Smitha, K.K.: Finite element analysis of composite beam with shear connectors. Procedia Technol. 24, 179–187 (2016). https://doi.org/10.1016/j.protcy.2016.05.025

    Article  Google Scholar 

  12. Wijesiri Pathirana, S.; Uy, B.; Mirza, O.; Zhu, X.: Flexural behaviour of composite steel-concrete beams utilising blind bolt shear connectors. Eng. Struct. 114, 181–194 (2016). https://doi.org/10.1016/j.engstruct.2016.01.057

    Article  Google Scholar 

  13. Classen, M.: Limitations on the use of partial shear connection in composite beams with steel T-sections and uniformly spaced rib shear connectors. J. Constr. Steel Res. 142, 99–112 (2018). https://doi.org/10.1016/j.jcsr.2017.11.023

    Article  Google Scholar 

  14. Alves, A.R.; Isabel, B.V.; Washintgon, B.V.; Gustavo, S.V.: Prospective study on the behaviour of composite beams with an indented shear connector. J. Constr. Steel Res. 148, 508–524 (2018). https://doi.org/10.1016/j.jcsr.2018.06.015

    Article  Google Scholar 

  15. Bamaga, S.O.; Tahir, M.M.; Tan, C.S.; Shek, P.N.; Aghlara, R.: Push-out tests on three innovative shear connectors for composite cold-formed steel concrete beams. Constr. Build. Mater. 223, 288–298 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.223

    Article  Google Scholar 

  16. Bonilla, J.; Bezerra, L.M.; Mirambell, E.: Resistance of stud shear connectors in composite beams using profiled steel sheeting. Eng. Struct. 187, 478–489 (2019). https://doi.org/10.1016/j.engstruct.2019.03.004

    Article  Google Scholar 

  17. Lima, J.M.; Bezerra, L.M.; Bonilla, J.; Barbosa, W.C.S.: Study of the behavior and resistance of right-angle truss shear connector for composite steel concrete beams. Eng. Struct. 253, 113778 (2022). https://doi.org/10.1016/j.engstruct.2021.113778

    Article  Google Scholar 

  18. Bezerra, L.M.; Barbosa, W.C.S.; Bonilla, J.; Cavalcante, O.R.O.: Truss-type shear connector for composite steel-concrete beams. Constr. Build. Mater. 167, 757–767 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.183

    Article  Google Scholar 

  19. Bezerra, L.M.; Cavalcante, O.O.; Chater, L.; Bonilla, J.: V-shaped shear connector for composite steel-concrete beam. J. Constr. Steel Res. 150, 162–174 (2018). https://doi.org/10.1016/j.jcsr.2018.07.016

    Article  Google Scholar 

  20. Braconi, A.; Elamary, A.; Salvatore, W.: Seismic behaviour of beam-to-column partial-strength joints for steelconcrete composite frames. J. Constr. Steel Res. 66, 1431–1444 (2010). https://doi.org/10.1016/j.jcsr.2010.05.004

    Article  Google Scholar 

  21. Elamary, A.; Ahmed, M.M.; Mohmoud, A.M.: Flexural behaviour and capacity of reinforced concrete–steel composite beams with corrugated web and top steel flange. Eng. Struct. 135, 136–148 (2017). https://doi.org/10.1016/j.engstruct.2017.01.002

    Article  Google Scholar 

  22. ACI: 211.1–91: Standard practice for selecting proportions for normal, heavyweight, and mass concrete. Farmington Hills, MI, USA (1991)

  23. American Society of Civil Engineers-(ASCE): standard for the structural design of composite slabs and standard practice for construction and inspection of composite slabs. American Society of Civil Engineers (1994)

  24. BS 5950-3.1: 1990: Structural use of steel work in buildings: part 3: Section 3.1: code of practice for design of simple and continuous composite beams (1991)

  25. Ding, F.-X.; Liu, J.; Liu, X.-M.; Guo, F.-Q.; Jiang, L.-Z.: Flexural stiffness of steel-concrete composite beam under positive moment. Steel Compos. Struct. 20, 1369–1389 (2016). https://doi.org/10.12989/scs.2016.20.6.1369

    Article  Google Scholar 

  26. Tadesse, Z.; Patel, K.A.; Chaudhary, S.; Nagpal, A.K.: Neural networks for prediction of deflection in composite bridges. J. Constr. Steel Res. 68, 138–149 (2012). https://doi.org/10.1016/j.jcsr.2011.08.003

    Article  Google Scholar 

  27. Gupta, R.K.; Kumar, S.; Patel, K.A.; Chaudhary, S.; Nagpal, A.K.: Rapid prediction of deflections in multi-span continuous composite bridges using neural networks. Int. J. Steel Struct. 15, 893–909 (2015). https://doi.org/10.1007/s13296-015-1211-9

    Article  Google Scholar 

  28. ACI: 318–08: Building code requirements for structural concrete and commentary. American Concrete Institute (2008)

  29. CEN- EN: Eurocode 1992-1-1: design of concrete structures. European Committee for Standardization (1992)

  30. Matamoros A.B.; Wong K.H.: Design of simply supported deep beams using strut-and-tie models. ACI Struct. J. 100(6), 704–712 (2003)

    Article  Google Scholar 

  31. Braconi, A.; Elamary, A.; Salvatore, W.: Improvement of seismic performance of steel-concrete composite joints by means of slab-column shear connection. In: Proceedings of the 12th Italian National Conference of Earthquake Engineering, PISA (2007)

Download references

Acknowledgements

This work was supported by the Taif University Researchers Supporting Project Number (TURSP-2020/276), Taif University, Taif, Saudi Arabia. The funding source was not involved in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. Elamary.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to declare.

Appendices

Appendix 1

Maximum Capacity of Manufactured Specimen

2.1 Using Proposed Factor of Safety

See Fig. 

Fig. 14
figure 14

Dimensions of composite beam

14.

$${A}_{\mathrm{st}}=39.10{\mathrm{cm}}^{2} , {I}_{xs}=3890\,{\mathrm{cm}}^{4} ,$$
$${E}_{\mathrm{st}}=200000 \, \mathrm{Mpa} , {E}_{c}=20000 \,\mathrm{Mpa}$$
$$n=\frac{{E}_{\mathrm{st}}}{{E}_{\mathrm{c}}}=\frac{200000}{20000}=10 \, \mathrm{Without}\, \mathrm{crack}$$
$$\overline{y }=\frac{\sum Ay}{\sum A}=\frac{\left(3910\times 120\right)+\left(\frac{1}{10}\times 500\times 80\times 280\right)}{\left(3910\right)+\left(\frac{1}{10}\times 500\times 80\right)}$$
$$\overline{{\varvec{y}} }=200.91\, \mathrm{mm}$$
$${{\varvec{h}}}_{1}=320-200.91=119.1\, \mathrm{mm}$$
$$\frac{1}{n}\times {b}_{c}\times {t}_{c}\left(Z-\frac{{t}_{c}}{2}\right)-{A}_{st}\left({h}_{1}-Z\right)=0$$
$$\frac{1}{10}\times 500\times 80\left(Z-\frac{80}{2}\right)-3910\times \left(119.1-Z\right)=0$$
$${\varvec{Z}}=79.1 \mathrm{mm}$$
$${I}_{x}=\frac{1}{n}\times \left[\frac{{b}_{c}\times {{t}_{c}}^{3}}{12}+{b}_{c}\times {t}_{c}\times {\left(\overline{y }-\left({h}_{s}+\frac{{t}_{s}}{2}\right)\right)}^{2}\right]+\left[{I}_{xs}+{A}_{st}{\left(\overline{y }-\frac{{h}_{s}}{2}\right)}^{2}\right]$$
$${I}_{x}=\frac{1}{10}\left[\frac{500\times {80}^{3}}{12}+500\times 80\times {\left(200.91-\left(240+\frac{80}{2}\right)\right)}^{2}\right]+\left[3890\times {10}^{4}+3910{\left(200.91-\frac{240}{2}\right)}^{2}\right]$$
$${I}_{x}=27154245.78+64496533.87=91650779.65 {\mathrm{mm}}^{4}$$
$$\sigma =\frac{{M}_{x}}{{I}_{x}}\overline{y }$$
$${M}_{x}=\frac{\sigma \times {I}_{x}}{\overline{y} }=\left(\frac{25\times 91650779.65}{119.1}\right)\times {10}^{-6}=19.34 \mathrm{kN}.\mathrm{m}$$
$$ M_{x} = \frac{19.34}{\frac{1}{n}} = 193.4 {\text{kN}}\,{\text{m}} $$
$$ P_{n} = \frac{193.4}{{0.6}} \times 2 = 641.25 \,{\text{kN}} $$
$${P}_{nsa}=\frac{{P}_{n}}{{\gamma }_{SA}}=\frac{641.25}{1.25}=513 \mathrm{kN}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharthi, Y.M., Sharaky, I.A., Elamary, A.S. et al. Flexural Behavior and Capacity of Composite Concrete-Steel Beams Using Various Shear Connectors. Arab J Sci Eng 48, 5587–5601 (2023). https://doi.org/10.1007/s13369-022-07485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07485-y

Keywords

Navigation