Skip to main content

Advertisement

Log in

A Survey on Software-Defined Networking-Based 5G Mobile Core Architectures

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fifth generation (5G) of the cellular network is envisioned to provide diverse services to the users including high data rates, energy efficiency, and low latency. The number of Internet of Things-connected devices, multimedia applications, and mobile users are expected to grow in the next few years. The massive growth in data consumption poses new challenges such as availability and scalability in future cellular networks. Software-defined networking (SDN) is a network technology that introduces flexibility and eases the management of network architecture by separating the control plane and data plane. In this paper, we survey the relevant works that propose an SDN-based mobile core architecture in order to move toward the 5G networks and to handle the complexity of an enormous number of connected devices to the network. We propose a taxonomy in which we categorize these works based on four factors: technology adoption, control plane implementation, evaluation technique, and architecture used in these works. We also provide the shortcomings of these architectures that should be tackled in future research works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jaber, M.; Imran, M.A.; Tafazolli, R.; Tukmanov, A.: 5G backhaul challenges and emerging research directions: a survey. IEEE Access 4, 1743–1766 (2016)

    Article  Google Scholar 

  2. O'Dea, S.: Number of smartphone subscriptions worldwide from 2016 to 2027. Statista. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/. Accessed 11 Jan 2021

  3. Common Reasons for High Data Usage. AT&T. https://www.att.com/support/article/wireless/KM1045105/. Accessed 11 Jan 2021

  4. O'Dea, S.: Average monthly smartphone data usage worldwide 2016–2021. Statista. https://www.statista.com/statistics/752731/worldwide-average-monthly-smartphone-cellular-data-usage/. Accessed 11 Jan 2021

  5. Cisco Annual Internet Report. Cisco. https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/air-highlights.html. Accessed 12 Jan 2021

  6. IDC Forecasts Worldwide 5G Connections to Reach 1.01 Billion in 2023. IDC. https://apnews.com/press-release/business-wire/technology-framingham-b353f23decfd4cc5b53c2a7bab189b62. Accessed 16 Dec 2021

  7. Reimagine your applications. Cisco. https://www.cisco.com/c/dam/en/us/solutions/collateral/executive-perspectives/annual-internet-report/air-executive-summary-pgr-application.pdf

  8. Chen, T.; Matinmikko, M.; Chen, X.; Zhou, X.; Ahokangas, P.: Software defined mobile networks: concept, survey, and research directions. IEEE Commun. Mag. 53(11), 126–133 (2015)

    Article  Google Scholar 

  9. AbdulGhaffar, A.; Mostafa, S.M.; Alsaleh, A.; Sheltami, T.; Shakshuki, E.M.: Internet of things based multiple disease monitoring and health improvement system. J. Ambient Intell. Hum. Comput. 11(3), 1021–1029 (2020)

    Article  Google Scholar 

  10. 5G and e-Health. https://5g-ppp.eu/wp-content/uploads/2016/02/5G-PPP-White-Paper-on-eHealth-Vertical-Sector.pdf. Accessed 20 Jan 2021

  11. 5G Automotive Vision. https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf. Accessed 20 Jan 2021

  12. 5G Solutions and Market Opportunities: Technologies, Infrastructure, Capabilities, Leading Apps and Services 2019–2024. Research and Markets ltd. https://www.researchandmarkets.com/reports/4850501/5gsolutions-and-market-opportunities

  13. IMT Vision—Framework and overall objectives of the future development of IMT for 2020 and beyond. International Telecommunication Union. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf

  14. NGMN 5G White Paper. NGMN. https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf. Accessed 22 Jan 2021

  15. Alawe, I., Ksentini, A., Hadjadj-Aoul, Y., Bertin, P., Kerbellec, A.: On evaluating different trends for virtualized and sdn-ready mobile network. In: 2017 IEEE 6th International Conference on Cloud Networking (CloudNet), pp 1–6. IEEE (2017)

  16. 4G Americas’ Recommendations on 5G Requirements and Solutions. 5G Americas. https://www.5gamericas.org/wp-content/uploads/2019/07/4G_Americas_Recommendations_on_5G_Requirements_and_Solutions_10_14_2014-FINALx-1.pdf. Accessed 20 Jan 2021

  17. Soldani, D.; Manzalini, A.: Horizon 2020 and beyond: On the 5G operating system for a true digital society. IEEE Veh. Technol. Mag. 10(1), 32–42 (2015)

    Article  Google Scholar 

  18. Montazerolghaem, A.: Software-defined load-balanced data center: design, implementation and performance analysis. Clust. Comput. 24(2), 591–610 (2021)

    Article  Google Scholar 

  19. Open Networking Foundation. https://www.opennetworking.org/. Accessed 25 Mar 2021

  20. Open Networking Foundation Formed to Speed Network Innovation. OpenFlow. https://web.archive.org/web/20140116023421/http:/archive.openflow.org/wp/2011/03/open-networking-foundation-formed-to-speed-network-innovation/. Accessed 24 Jan 2021

  21. OpenFlow Switch Specification. Open Networking Foundation. https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf. Accessed 22 Jan 2021

  22. Jungnickel, V., et al.: Software-defined open architecture for front-and backhaul in 5G mobile networks. In: 2014 16th International Conference on Transparent Optical Networks (ICTON) (pp. 1–4). IEEE 2014

  23. Valastro, G.C., Panno, D., Riolo, S.: A SDN/NFV based C-RAN architecture for 5G mobile networks. In: 2018 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT), pp. 1–8. IEEE (2018)

  24. Pitt, D.: Key Benefits of OpenFlow-Based SDN. Open Networking Foundation. https://opennetworking.org/news-and-events/blog/key-benefits-of-openflow-based-sdn/. Accessed 24 Jan 2021

  25. 2020 Global Networking Trends Report. Cisco. https://www.cisco.com/c/m/en_us/solutions/enterprise-networks/networking-report.html

  26. Vision on Software Networks and 5G. 5G-PPP Software Network Working Group. https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP_SoftNets_WG_whitepaper_v20.pdf. Accessed 20 Jan 2021

  27. From Webscale to Telco, the Cloud Native Journey. 5G-PPP Software Network Working Group. https://5g-ppp.eu/wp-content/uploads/2018/07/5GPPP-Software-Network-WG-White-Paper-July-2018.pdf. Accessed 20 Jan 2021

  28. Said, S.B.H.; Cousin, B.; Lahoud, S.: Software defined networking (SDN) for reliable user connectivity in 5G networks. In: 2017 IEEE Conference on Network Softwarization (NetSoft), pp. 1–5. IEEE (2017)

  29. Saif, D.; Arsiwala, F.; Khanna, I.: Software defined networking in next generation mobile backhauls: a survey. In: 2018 IEEE 5G World Forum (5GWF), pp. 106–111. IEEE (2018)

  30. Long, Q.; Chen, Y.; Zhang, H.; Lei, X.: Software defined 5G and 6G networks: a survey. Mob. Netw. Appl. 66, 1–21 (2019)

    Google Scholar 

  31. Barakabitze, A.A.; Ahmad, A.; Mijumbi, R.; Hines, A.: 5G network slicing using SDN and NFV: a survey of taxonomy, architectures and future challenges. Comput. Netw. 167, 106984 (2020)

    Article  Google Scholar 

  32. Zaidi, Z.; Friderikos, V.; Yousaf, Z.; Fletcher, S.; Dohler, M.; Aghvami, H.: Will SDN be part of 5G? IEEE Commun. Surv. Tutor. 20(4), 3220–3258 (2018)

    Article  Google Scholar 

  33. TS 23.501: System Architecture for the 5G System; Stage 2, 3GPP Std., 3GPP

  34. Abdulghaffar, A.; Mahmoud, A.; Abu-Amara, M.; Sheltami, T.: Modeling and evaluation of software defined networking based 5G core network architecture. IEEE Access 9, 10179–10198 (2021)

    Article  Google Scholar 

  35. Zhou, W.; Li, L.; Luo, M.; Chou, W.: REST API design patterns for SDN northbound API. In: 2014 28th International Conference on Advanced Information Networking and Applications Workshops, pp. 358–365. IEEE (2014)

  36. Brown, G.: Service-based architecture for 5G core networks. In: White Paper: Huawei Technology Co. Ltd (2017)

  37. Rudolph, H.C.; Kunz, A.; Iacono, L.L.; Nguyen, H.V.: Security challenges of the 3g pp 5g service based architecture. IEEE Commun. Stand. Mag. 3(1), 60–65 (2019)

    Article  Google Scholar 

  38. Afolabi, I.; Taleb, T.; Samdanis, K.; Ksentini, A.; Flinck, H.: Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun. Surv. Tutor. 20(3), 2429–2453 (2018)

    Article  Google Scholar 

  39. Sezer, S., et al.: Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag. 51(7), 36–43 (2013)

    Article  Google Scholar 

  40. Kreutz, D.; Ramos, F.M.V.; Esteves Verissimo, P.; Esteve Rothenberg, C.; Azodolmolky, S.; Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015). https://doi.org/10.1109/jproc.2014.2371999

    Article  Google Scholar 

  41. Pham, M.; Hoang, D.B.: SDN applications-The intent-based Northbound Interface realisation for extended applications. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft), pp. 372–377. IEEE (2016)

  42. Madhava, K.: What is Software-Defined Networking (SDN) Application? Lavelle Networks. Accessed 25 Jan 2021. https://lavellenetworks.com/blog/sdn-applications/

  43. SDN Versus Traditional Networking Explained. IBM. https://www.ibm.com/services/network/sdn-versus-traditional-networking. Accessed 28 Jan 2021

  44. Ryu SDN Framework. Available: https://ryu-sdn.org/. Accessed 15 Mar 2021

  45. Floodlight OpenFlow Controller. https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview. Accessed 16 Dec 2021

  46. OpenDaylight: Open Source SDN Platform. https://www.opendaylight.org/. Accessed 16 Dec 2021

  47. NOX Network Control Platform. https://github.com/noxrepo/nox. Accessed 25 Jan 2021

  48. Open Network Operating System (ONOS®) SDN controller for SDN/NFV solutions. https://opennetworking.org/onos/. Accessed 25 Jan 2021

  49. Beacon, Java-based OpenFlow controller. https://openflow.stanford.edu/display/Beacon/Home. Accessed 25 Jan 2021

  50. C. Trois, M. D. Del Fabro, L. C. de Bona, M. Martinello 2016 A survey on SDN programming languages: toward a taxonomy. IEEE Commun. Surv. Tutor. 18(4), 2687–2712 (2016)

  51. Staff, S.: What is OpenFlow? Definition and how it Relates to SDN. https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/. Accessed 15 March 2020

  52. Farinacci, D.; Fuller, V.; Meyer, D.; Lewis, D.: Locator/ID separation protocol (LISP). Internet-dra (2013)

  53. Rodriguez-Natal, A., et al.: LISP: a southbound SDN protocol? IEEE Commun. Mag. 53(7), 201–207 (2015)

    Article  Google Scholar 

  54. Song, H.: Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof forwarding plane. In: Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, pp. 127–132 (2013)

  55. Smith, M.; Dvorkin, M.; Laribi, Y.; Pandey, V.; Garg, P.; Weidenbacher, N.: OpFlex control protocol. In: IETF (2014).

  56. Doria, A., et al.: Forwarding and control element separation (ForCES) protocol specification.". RFC 5810, 1–124 (2010)

    Google Scholar 

  57. Enns, R.; Bjorklund, M.; Schoenwaelder, J.; Bierman, A.: Network configuration protocol (NETCONF) (2011)

  58. Pfaff, B.; Davie, B.: The Open vSwitch Database Management Protocol. https://www.rfc-editor.org/rfc/rfc7047.txt. Accessed 25 Jan 2021

  59. Gupta, D.; Jahan, R.: Inter-sdn controller communication: using border gateway protocol. In: White Paper by Tata Consultancy Services (TCS) (2014)

  60. Tootoonchian, A.; Ganjali, Y.: Hyperflow: a distributed control plane for openflow. In: Proceedings of the 2010 Internet Network Management Conference on Research on Enterprise Networking, vol. 3 (2010)

  61. Koponen, T., et al.: Onix: a distributed control platform for large-scale production networks. In: OSDI, vol. 10, pp. 1–6 (2010)

  62. Benamrane, F.; Benaini, R.: An East-West interface for distributed SDN control plane: implementation and evaluation. Comput. Electr. Eng. 57, 162–175 (2017)

    Article  Google Scholar 

  63. Yin, H.; Xie, H.; Tsou, T.; Lopez, D.; Aranda, P.; Sidi, R.: Sdni: a message exchange protocol for software defined networks (sdns) across multiple domains. In: IETF Draft (2012)

  64. Yu, H.; Li, K.; Qi, H.; Li, W.; Tao, X.: Zebra: an east–west control framework for sdn controllers. In: 2015 44th International Conference on Parallel Processing, pp. 610–618. IEEE (2015)

  65. Lin, P.; Bi, J.; Wang, Y.: East–west bridge for SDN network peering. In: Frontiers in Internet Technologies, pp. 170–181. Springer (2013)

  66. Indigo—Project Floodlight. https://floodlight.atlassian.net/wiki/spaces/Indigo/overview

  67. Open vSwitch. http://www.openvswitch.org/. Accessed 16 Dec 2021

  68. Phantou: OpenFlow 1.3 for OpenWRT. https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow-1.3-for-OpenWRT. Accessed 28 Jan 2021

  69. Lockwood, J.W., et al.: NetFPGA--an open platform for gigabit-rate network switching and routing. In: 2007 IEEE International Conference on Microelectronic Systems Education (MSE'07), pp. 160–161. IEEE (2007)

  70. Anwer, M.B.; Motiwala, M.; Tariq, M. B.; Feamster, N.: Switchblade: a platform for rapid deployment of network protocols on programmable hardware. In: Proceedings of the ACM SIGCOMM 2010 Conference (2010), pp. 183–194

  71. Lu, G., et al.: Serverswitch: a programmable and high performance platform for data center networks. In: Nsdi, vol. 11, p. 2 (2011)

  72. Software-Defined Networking. NEC. Available: https://www.necam.com/SDN/. Accessed 16 Dec 2021

  73. Jin, X.; Li, L.E.; Vanbever, L.; Rexford, J.: Softcell: scalable and flexible cellular core network architecture. In: Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies, pp. 163–174. ACM (2013)

  74. Akshatha, N.M.; Jha, P.; Karandikar, A.: A centralized SDN architecture for the 5G cellular network. In: 2018 IEEE 5G World Forum (5GWF), pp. 147–152. IEEE (2018)

  75. Moradi, M.; Wu, W.; Li, L.E.; Mao, Z.M.: SoftMoW: recursive and reconfigurable cellular WAN architecture. In: Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies, pp. 377–390. ACM (2014)

  76. Kim, Y.H.; Gil, J.M.; Kim, D.: A location-aware network virtualization and reconfiguration for 5G core network based on SDN and NFV. Int. J. Commun. Syst. 34(2), e4160 (2021)

    Article  Google Scholar 

  77. Chourasia, S.; Sivalingam, K.M.: SDN based Evolved Packet Core architecture for efficient user mobility support. In: 2015 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–5. IEEE (2015)

  78. Qu, K.; Zhuang, W.; Ye, Q.; Shen, X.; Li, X.; Rao, J.: Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks. IEEE Trans. Commun. 68(4), 2394–2408 (2020)

    Article  Google Scholar 

  79. Wang, H.; Chen, S.; Xu, H.; Ai, M.; Shi, Y.: SoftNet: a software defined decentralized mobile network architecture toward 5G. IEEE Netw. 29(2), 16–22 (2015)

    Article  Google Scholar 

  80. Tadros, C.N.; Rizk, M.R.; Mokhtar, B.M.: Software defined network-based management for enhanced 5G network services. IEEE Access 8, 53997–54008 (2020)

    Article  Google Scholar 

  81. Sama, M.R.; Said, S.B.H.; Guillouard, K.; Suciu, L.: Enabling network programmability in LTE/EPC architecture using OpenFlow. In: 2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 389–396. IEEE (2014)

  82. Wen, J.; Li, V.O.: Data prefetching to reduce delay in software-defined cellular networks. In: 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1845–1849. IEEE (2015)

  83. Nguyen, V.-G., Kim, Y.: Signaling load analysis in openflow-enabled lte/epc architecture. In: 2014 International Conference on Information and Communication Technology Convergence (ICTC), pp. 734–735. IEEE (2014)

  84. Nguyen, V.G.; Kim, Y.: Proposal and evaluation of SDN-based mobile packet core networks. EURASIP J. Wirel. Commun. Netw. 2015(1), 172 (2015)

    Article  Google Scholar 

  85. Bilen, T.; Canberk, B.; Chowdhury, K.R.: Handover management in software-defined ultra-dense 5G networks. IEEE Netw. 31(4), 49–55 (2017)

    Article  Google Scholar 

  86. Pagé, J.; Dricot, J.-M.: Software-defined networking for low-latency 5G core network. In: 2016 International Conference on Military Communications and Information Systems (ICMCIS). IEEE (2016)

  87. Prados-Garzon, J.; Adamuz-Hinojosa, O.; Ameigeiras, P.; Ramos-Munoz, J.J.; Andres-Maldonado, P.; Lopez-Soler, J.M.: Handover implementation in a 5G SDN-based mobile network architecture. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6. IEEE (2016)

  88. Shanmugalingam, S.; Bertin, P.: Programmable mobile core network. In: 2014 IEEE Symposium on Computers and Communication (ISCC), pp. 1–7. IEEE (2014)

  89. Fattore, U.; Giust, F.; Liebsch, M.; 5GC+: an experimental proof of a programmable mobile core for 5G. In: 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 1–6. IEEE (2018)

  90. Jain, A.; Sadagopan, N.; Lohani, S.K.; Vutukuru, M.: A comparison of SDN and NFV for re-designing the LTE packet core. In: IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 74–80. IEEE (2016)

  91. Ma, L.; Wen, X.; Wang, L.; Lu, Z.; Knopp, R.: An SDN/NFV based framework for management and deployment of service based 5G core network. China Commun. 15(10), 86–98 (2018)

    Article  Google Scholar 

  92. Eichhorn, F.; Corici, M.I.; Magedanz, T.; Du, P.; Kiriha, Y.; Nakao, A.: SDN enhancements for the sliced, deep programmable 5G core. In: 2017 13th International Conference on Network and Service Management (CNSM 2017), vol. 2018, pp. 1–4 (2018)

  93. Gagniuc, P.A.: Markov Chains: From Theory to Implementation and Experimentation. Wiley, New York (2017)

    Book  MATH  Google Scholar 

  94. Kavanagh, S.: What is Network Slicing? https://5g.co.uk/guides/what-is-network-slicing/. Accessed 25 Mar 2021

  95. Basta, A.; Kellerer, W.; Hoffmann, M.; Hoffmann, K.; Schmidt, E.-D.: A virtual SDN-enabled LTE EPC architecture: a case study for S-/P-gateways functions. In: 2013 IEEE SDN for Future Networks and Services (SDN4FNS), pp. 1–7. IEEE (2013)

  96. Peterson, L.: Cord: central office re-architected as a datacenter. In: Open Networking Lab White Paper, vol. 550 (2015)

  97. Ateya, A.A., et al.: Chaotic salp swarm algorithm for SDN multi-controller networks. Eng. Sci. Technol. Int. J. 22(40), 1001–1012 (2019)

    Google Scholar 

  98. Boyd, N.: Multi-Access Edge Computing (MEC) and Distributed Cloud. SDxCentral. https://www.sdxcentral.com/edge/definitions/whats-the-difference-between-mec-and-distributed-cloud/. Accessed 28 Jan 2021

  99. Hu, X.; Wang, L.; Wong, K.-K.; Tao, M.; Zhang, Y.; Zheng, Z.: Edge and central cloud computing: a perfect pairing for high energy efficiency and low-latency. IEEE Trans. Wirel. Commun. 19(2), 1070–1083 (2019)

    Article  Google Scholar 

  100. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling. Wiley, New York (1991)

    MATH  Google Scholar 

  101. MathWorks. MATLAB. https://www.mathworks.com/products/matlab.html. Accessed 20 Jan 2021

  102. ns-3. ns-3 | a discrete-event network simulator for Internet systems. https://www.nsnam.org/. Accessed 20 Jan 2021

  103. Mininet-WiFi | Emulation Platform for Software-Defined Wireless Networks. https://mininet-wifi.github.io/. Accessed 16 Dec 2021

  104. Simulink—Simulation and Model-Based Design—MATLAB & Simulink. https://www.mathworks.com/products/simulink.html. Accessed 22 Jan 2021

  105. mininet/mininet: Emulator for rapid prototyping of Software Defined Networks. https://github.com/mininet/mininet. Accessed 22 Jan 2021

  106. OpenEPC. https://sites.google.com/a/corenetdynamics.com/openepc/home. Accessed 30 Jan 2021

  107. free5GC. Available: https://www.free5gc.org/. Accessed 4 Feb 2022

  108. OpenAirInterface | 5G software alliance for democratising wireless innovation. https://openairinterface.org/. Accessed 16 June 2021

  109. Open5GS | Open source project of 5GC and EPC (Release-16). https://open5gs.org/. Accessed 16 June 2021

  110. GitHub—aligungr/UERANSIM: Open source 5G UE and RAN (gNodeB) implementation. https://github.com/aligungr/UERANSIM. Accessed 16 June 2021

  111. Murthy, A.K.; Parthasarathi, R.; Vetriselvi, V.: Security testbed for next generation mobile networks. In: 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP), pp. 122–129. IEEE

  112. Lin, Y.-B.; Tseng, C.-C.; Wang, M.-H.: Effects of transport network slicing on 5G applications. Future Internet 13(3), 69 (2021)

    Article  Google Scholar 

  113. Drif Y. et al. 2020 An extensible network slicing framework for satellite integration into 5G. Int. J. Satellite Commun. Netw. (2020)

  114. Costanzo, S.; Fajjari, I.; Aitsaadi, N.; Langar, R.: SDN-based network slicing in C-RAN. In: 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–2. IEEE (2018)

  115. Fajjari, I.; Aitsaadi, N.; Amanou, S.: Optimized resource allocation and RRH attachment in experimental SDN based cloud-RAN. In: 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–6., IEEE (2019)

  116. Costanzo, S.; Cherrier, S.; Langar, R.: Network slicing orchestration of IoT-BeC 3 applications and eMBB services in C-RAN; In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 975–976. IEEE (2019)

Download references

Acknowledgements

The authors would like to acknowledge the support provided by King Fahd University of Petroleum and Minerals (KFUPM), the Interdisciplinary Research Center for Smart Mobility and Logistics, and the Department of Computer Engineering for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Aziz Abdul Ghaffar.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Ghaffar, A., Mahmoud, A., Sheltami, T. et al. A Survey on Software-Defined Networking-Based 5G Mobile Core Architectures. Arab J Sci Eng 48, 2313–2330 (2023). https://doi.org/10.1007/s13369-022-07183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07183-9

Keywords

Navigation