Skip to main content
Log in

Experimental Investigation and Modeling of Friction Coefficient and Material Removal During Optical Glass Polishing

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Chemical mechanical polishing is a hybrid polishing technique having different applications in the semiconductor industry, biomedical and optical instrumentation, and defense equipment. The control and accuracy highly depend on the operator's skill due to limited knowledge of material removal behavior. This article attempts to fill this gap through an experimental investigation of friction coefficient and material removal rate as functions of abrasive particle size, normal load, relative velocity, and polishing time during BK7 optical glass polishing. In this article, Taguchi L18 mixed levels full factorial design was used to perform the experiments. Also, a temporal model for material removal rate is developed to study and investigate the mechanism of material removal. The results show the load per particle varies between 0.18 × 10–6 and 4.1 × 10–6 N, which led to the conclusion that material, are removed plastically from the workpiece surface and mechanical actions are dominant over chemical actions in material removal. The values of friction coefficient (μ ~ 0.1) and 3D profilometer images also support this statement. The errors between predicted and experimental results are well within 8% and 12% for friction coefficient and material removal rate, respectively. This study is an important step toward the deterministic optical polishing process, leading to better control of material removal during the polishing of precision optical components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

Abbreviations

μ :

Friction coefficient

k :

Preston’s constant

ρ :

Density

a :

Abrasive size

L :

Polishing load

p :

Polishing pressure

v :

Speed (relative, polishing)

r :

Offset distance between workpiece and polisher centers

s :

Polisher speed

w :

Weight

D :

Diameter of the workpiece

A r :

Workpiece to polisher area ratio

Ns :

Number of abrasive particles bearing the polishing load

t p :

Pad thickness

F a :

Load per particle

V a :

Volume of abrasive particle

x, y, z, γ , α, β, ε:

Fitting parameters

MRR:

Material removal rate

CMP:

Chemical mechanical polishing

OA:

Orthogonal array

AFM:

Atomic force microscope

ANOVA:

Analysis of variance

Adj SS:

Adjusted sum of square

Adj MS:

Adjusted mean square

DOF:

Degrees of freedom

SR:

Surface roughness

CCI:

Coherence correlation interferometry

References

  1. Jain, V.K.; Balasubramaniam, R.; Mote, R.G.; Das, M.; Sharma, A.; Kumar, A.; Garg, V.; Kamaliya, B.: Micromachining: an overview (Part I) 3, 142–158 (2020). https://doi.org/10.1177/2516598419895828

    Article  Google Scholar 

  2. Yu, T.; Li, H.; Wang, W.: Experimental investigation on grinding characteristics of optical glass BK7: with special emphasis on the effects of machining parameters. Int. J. Adv. Manuf. Technol. 82, 1405–1419 (2016). https://doi.org/10.1007/s00170-015-7495-2

    Article  Google Scholar 

  3. Kumar, M.; Vaishya, R.O.; Oza, A.D.; Suri, N.M.: Experimental investigation of wire-electrochemical discharge machining (WECDM) performance characteristics for quartz material. SILICON 12, 2211–2220 (2020). https://doi.org/10.1007/s12633-019-00309-z

    Article  Google Scholar 

  4. Baisden, P.A.; Atherton, L.J.; Hawley, R.A.; Land, T.A.; Menapace, J.A.; Miller, P.E.; Runkel, M.J.; Spaeth, M.L.; Stolz, C.J.; Suratwala, T.I.; Wegner, P.J.; Wong, L.L.: Large optics for the national ignition facility. Fusion Sci. Technol. 69, 295–351 (2016). Doi: https://doi.org/10.13182/FST15-143

  5. Savio, G.; Pal, R.K.; Meneghello, R.; D’Angelo, L.; Concheri, G.: Shape and curvature error estimation in polished surfaces of ground glass molds. Optice. 56, 024101–024101 (2017)

    Article  Google Scholar 

  6. Meneghello, R.; Concheri, G.; Savio, G.; Comelli, D.: Surface and geometry error modeling in brittle mode grinding of ophthalmic lenses moulds. Int. J. Mach. Tools Manuf 46, 1662–1670 (2006). https://doi.org/10.1016/j.ijmachtools.2005.08.016

    Article  Google Scholar 

  7. Alam, Z.; Khan, D.A.; Jha, S.: A study on the effect of polishing fluid volume in ball end magnetorheological finishing process. Mater. Manuf. Process. 33, 1197–1204 (2018). https://doi.org/10.1080/10426914.2017.1364760

    Article  Google Scholar 

  8. Savio, G.; Meneghello, R.; Concheri, G.: A surface roughness predictive model in deterministic polishing of ground glass moulds. Int. J. Mach. Tools Manuf 49, 1–7 (2009). https://doi.org/10.1016/j.ijmachtools.2008.09.001

    Article  Google Scholar 

  9. Pal, R.K.; Garg, H.; Sarepaka, V.; Karar, V.: Experimental investigation of material removal and surface roughness during optical glass polishing. Mater Manuf. Process. 31, 1613–1620 (2016)

    Article  Google Scholar 

  10. Pal, R.K.; Garg, H.; Karar, V.: Material removal characteristics of full aperture optical polishing process. Mach. Sci. Technol. 21, 493–525 (2017). https://doi.org/10.1080/10910344.2017.1336626

    Article  Google Scholar 

  11. Wang, G.; Zhou, X.; Meng, G.; Yang, X.: Modeling surface roughness for polishing process based on abrasive cutting and probability theory. Mach. Sci. Technol. 22, 86–98 (2018). https://doi.org/10.1080/10910344.2017.1336629

    Article  Google Scholar 

  12. Cook, L.M.: Chemical processes in glass polishing. J. Non-Cryst. Solids 120, 152–171 (1990). https://doi.org/10.1016/0022-3093(90)90200-6

    Article  Google Scholar 

  13. Krishnan, M.; Nalaskowski, J.W.; Cook, L.M.: Chemical mechanical planarization: Slurry chemistry, materials, and mechanisms. Chem. Rev. 110, 178–204 (2010). https://doi.org/10.1021/cr900170z

    Article  Google Scholar 

  14. Wang, C.C.; Lin, S.C.; Hochen, H.: A material removal model for polishing glass-ceramic and aluminum magnesium storage disks. Int. J. Mach. Tools Manuf 42, 979–984 (2002). https://doi.org/10.1016/S0890-6955(02)00004-4

    Article  Google Scholar 

  15. Werrell, J.M.; Mandal, S.; Thomas, E.L.; Brousseau, E.B.; Lewis, R.; Borri, P.; Davies, P.R.; Williams, O.A.: Effect of slurry composition on the chemical mechanical polishing of thin diamond films. Sci. Technol. Adv. Mater. 18, 654–663 (2017)

    Article  Google Scholar 

  16. Evans, C.J.; Paul, E.; Dornfield, D.; Lucca, D.A.; Byrne, G.; Tricard, M.; Klocke, F.; Dambon, O.; Mullany, B.A.: Material removal mechanisms in lapping and polishing. CIRP Ann. Manuf. Technol. 52, 611–633 (2003). https://doi.org/10.1016/S0007-8506(07)60207-8

    Article  Google Scholar 

  17. Lai, J.Y.: Mechanics, mechanisms, and modeling of the chemical mechanical polishing process, in: Department of Mechanical Engineering, Massachusetts Institute of Technology, pp. 308 (2001)

  18. Pal, R.K.; Garg, H.; Karar, V.: Full aperture optical polishing process: Overview and challenges. Lecture Notes in Mechanical Engineering. 461–470 (2016). Doi: https://doi.org/10.1007/978-81-322-2740-3_45

  19. Suratwala, T.I.; Feit, M.D.; Steele, W.A.: Toward deterministic material removal and surface figure during fused silica pad polishing. J. Am. Ceram. Soc. 93, 1326–1340 (2010). https://doi.org/10.1111/j.1551-2916.2010.03607.x

    Article  Google Scholar 

  20. Belkhir, N.; Bouzid, D.; Herold, V.: Determination of the friction coefficient during glass polishing. Tribol. Lett. 33, 55–61 (2009). https://doi.org/10.1007/s11249-008-9391-5

    Article  Google Scholar 

  21. Belkhir, N.; Aliouane, T.; Bouzid, D.: Correlation between contact surface and friction during the optical glass polishing. Appl. Surf. Sci. 288, 208–214 (2014). https://doi.org/10.1016/j.apsusc.2013.10.008

    Article  Google Scholar 

  22. Kelm, A.; Boerret, R.; Sinzinger, S.: Improving the polishing accuracy by determining the variance of the friction coefficient. J. Eur. Opt. Soc. 7, (2012). Doi: https://doi.org/10.2971/jeos.2012.12049

  23. Yu, J.; Yuan, W.; Hu, H.; Zang, H.; Cai, Y.; Ji, F.: Nanoscale friction and wear of phosphate laser glass and BK7 glass against single CeO2 particle by AFM. J. Am. Ceram. Soc. 98, 1111–1120 (2015). https://doi.org/10.1111/jace.13356

    Article  Google Scholar 

  24. Suratwala, T.; Steele, W.; Feit, M.; Shen, N.; Dylla-Spears, R.; Wong, L.; Miller, P.; Desjardin, R.; Elhadj, S.; Pharr, G.: Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses. J. Am. Ceram. Soc. 99, 1974–1984 (2016). https://doi.org/10.1111/jace.14220

    Article  Google Scholar 

  25. Almeida, R.; Börret, R.; Rimkus, W.; Harrison, D.K.; DeSilva, A.K.M.: Material removal simulation for steel mould polishing. Prod. Manuf. Res. 5, 235–249 (2017). https://doi.org/10.1080/21693277.2017.1374889

    Article  Google Scholar 

  26. Suratwala, T.; Feit, M.; Steele, W.; Wong, L.; Shen, N.; Dylla-Spears, R., et al.: Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness during pad polishing. J. Am. Ceram. Soc. 97, 81–91 (2014)

    Article  Google Scholar 

  27. Deng, C.; Jiang, L.; Qin, N.; Qian, L.: Effects of pH and H2O2 on the chemical mechanical polishing of titanium alloys. J. Mater. Process. Technol. 295 (2021). Doi: https://doi.org/10.1016/j.jmatprotec.2021.117204

  28. Deng, C., Jiang, L., & Qian, L.: High-efficiency chemical mechanical polishing of Ti-6Al-4V alloy via the synergistic action of H2O2 and K+ under alkaline conditions. ECS J. Solid State Sci. Technol. 11, 024005 (2022)

  29. Liang, H.; Kaufman, F.; Sevilla, R.; Anjur, S.: Wear phenomena in chemical mechanical polishing. Wear 211, 271–279 (1997). https://doi.org/10.1016/S0043-1648(97)00124-5

    Article  Google Scholar 

  30. Luo, Q.; Ramarajan, S.; Babu, S.V.: Modification of the Preston equation for the chemical-mechanical polishing of copper. Thin Solid Films 335, 160–167 (1998). https://doi.org/10.1016/S0040-6090(98)00896-7

    Article  Google Scholar 

  31. Srinivasa-Murthy, C.; Wang, D.; Beaudoin, S.P.; Bibby, T.; Holland, K.; Cale, T.S.: Stress distribution in chemical mechanical polishing. Thin Solid Films 308–309, 533–537 (1997). https://doi.org/10.1016/S0040-6090(97)00433-1

    Article  Google Scholar 

  32. Lee, H.; Kim, H.; Jeong, H.: Approaches to sustainability in chemical mechanical polishing (CMP): a review. Int. J. Precision Eng. Manuf. Green Technol. 9, 349–367 (2021). https://doi.org/10.1007/s40684-021-00406-8

    Article  Google Scholar 

  33. Seo, J.: A review on chemical and mechanical phenomena at the wafer interface during chemical mechanical planarization. J. Mater. Res. 36, 235–257 (2021). https://doi.org/10.1557/s43578-020-00060-x

    Article  Google Scholar 

  34. Terrell, E.J.; Higgs, C.F.: Hydrodynamics of slurry flow in chemical mechanical polishing: a review. J. Electrochem. Soc. 153, K15 (2006). https://doi.org/10.1149/1.2188329

    Article  Google Scholar 

  35. Pal, R. K., Kumar, M., Karar, V.: Experimental investigation of polishing process for Schott BK-7 optical glass. In: Materials Today: Proceedings, 57, 734–738 (2022). Doi: https://doi.org/10.1016/j.matpr.2022.02.218

  36. Kumar, S.; Singh, A.K.: Magnetorheological nanofinishing of BK7 glass for lens manufacturing. Mater. Manuf. Processes 33, 1188–1196 (2018). https://doi.org/10.1080/10426914.2017.1364759

    Article  Google Scholar 

  37. Sharma, R.; Mishra, V.; Khatri, N.; Garg, H.; Karar, V.: A hybrid fabrication approach and profile error compensation for silicon aspheric optics. Proc Inst Mech Eng Part B J Eng Manuf. 233, 1600–1607 (2019). https://doi.org/10.1177/0954405417733018

    Article  Google Scholar 

  38. Tsegaw, A.A.; Shiou, F.J.; Lin, S.P.: Ultra-precision polishing of N-Bk7 using an innovative self-propelled abrasive fluid multi-jet polishing tool. Mach. Sci. Technol. 19, 262–285 (2015). https://doi.org/10.1080/10910344.2015.1018532

    Article  Google Scholar 

  39. Moses, E.I.: Advances in inertial confinement fusion at the National Ignition Facility (NIF). Fusion Eng. Des. 85, 983–986 (2010). https://doi.org/10.1016/j.fusengdes.2009.11.006

    Article  Google Scholar 

  40. Limbach, R.; Winterstein-Beckmann, A.; Dellith, J.; Möncke, D.; Wondraczek, L.: Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: From normal to anomalous behavior. J. Non-Cryst. Solids 417–418, 15–27 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.02.019

    Article  Google Scholar 

  41. Preedy, E.; Perni, S.; Nipiĉ, D.; Bohinc, K.; Prokopovich, P.: Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. Langmuir 30, 9466–9476 (2014). https://doi.org/10.1021/la501711t

    Article  Google Scholar 

  42. Jain, V.K.; Sidpara, A.; Sankar, M.R.; Das, M.: Nano-finishing techniques: A review. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 226, 327–346 (2012). https://doi.org/10.1177/0954406211426948

    Article  Google Scholar 

  43. U.P. Incorporated, LP UNALON - Precision polishing material engineered to deliver superior flatness & higher removal rates. In: U.P. Incorporated (Ed.) Innovative Polishing Material, Universal Photonics Incorporated, USA, (2015

  44. Greenwood, J.A.; Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  Google Scholar 

  45. Popov, V.: Rigorous Treatment of Contact Problems—Hertzian Contact, In: Contact Mechanics and Friction, Springer, Heidelberg, 2010, pp. 55–70.Sdas

  46. Meyer, K.; Polzer, G.; Meissner, F.: Grundlagen zu Reibung und Verschleiß. VEB Deutscher Verlag für Grundstoffindustrie Leipzig, Leipzig 1983, 2., durchgesehene u. erweiterte Auflage mit 340 S., 156 Bildern und 40 Tabellen, Preis: M 35,—, Cryst Res Technol, 19 (1984) K35-K35

  47. Johnson, K.L.: One hundred years of hertz contact. Proc. Inst. Mech. Eng. 196, 363–378 (1982). https://doi.org/10.1243/PIME_PROC_1982_196_039_02

    Article  Google Scholar 

  48. Tesar, A.A.; Fuchs, B.A.: Removal rates of fused silica with cerium oxide/pitch polishing. In: Doherty, V.J. (Ed.) Advanced Optical Manufacturing and Testing II, pp. 80–90. SPIE (1992)

    Chapter  Google Scholar 

  49. Yu, J.; He, H.; Zhang, Y.; Hu, H.: Nanoscale mechanochemical wear of phosphate laser glass against a CeO2 particle in humid air. Appl. Surf. Sci. 392, 523–530 (2017). https://doi.org/10.1016/j.apsusc.2016.09.061

    Article  Google Scholar 

  50. Yu, J., Hu, H., Jia, F., Yuan, W. ,Zang, H., Cai, Y., Ji F.: Quantitative investigation on single-asperity friction and wear of phosphate laser glass against aspherical AFM diamond tip. Tribol. Int., pp. 43–52. (2015)

  51. Preston, F.W.: The theory and design of plate glass polishing machine. J. Soc. Glas. Technol. 11, 214–256 (1927)

    Google Scholar 

  52. Suratwala, T.; Steele, W.A.; Feit, M.D. et al.: Mechanisms and control of surface figure & roughness during pad polishing. In: Optical Fabrication and Testing, OSA, Kohala Coast, Hawaii, USA (2014)

  53. Suratwala, T.; Steele, R.; Feit, M., et al.: Convergent polishing: a simple, rapid, full aperture polishing process of high quality optical flats & spheres. J. Vis. Exp. 94, 1–10 (2014). https://doi.org/10.3791/51965

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to thank the Director, CSIR-Central Scientific Instruments Organization, and Chandigarh, India, for providing the necessary resources and research facilities to carry out this study.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

RKP contributed to conceptualization, resources, methodology, data curation, software, formal analysis, supervision, validation, investigation, writing—reviewing and editing, and project administration. MK contributed to data curation, formal analysis, methodology, software, visualization, and investigation. VK contributed to resources, visualization, supervision, validation, and project administration.

Corresponding author

Correspondence to Raj Kumar Pal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they have no conflict of interest.

Ethics Approval

For this type of study formal consent is not required.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable for this type of study.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, R.K., Kumar, M. & Karar, V. Experimental Investigation and Modeling of Friction Coefficient and Material Removal During Optical Glass Polishing. Arab J Sci Eng 48, 3255–3268 (2023). https://doi.org/10.1007/s13369-022-07042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07042-7

Keywords

Navigation