Skip to main content
Log in

Damage Prediction of Underground Pipelines Subjected to Blast Loading

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present time, the contribution of underground pipelines is of great significance. Considering the importance of underground pipelines and their susceptibility to explosion, the damage prediction and safety of buried pipelines have become very crucial. This study presents the development of artificial intelligence (AI) models to accurately predict damage in underground steel pipelines subjected to blast loading. For the development of AI models, hundreds of blast simulations were performed in ABAQUS/Explicit using Combined Eulerian–Lagrangian (CEL) approach. The overall efficiency of the developed artificial intelligence (AI) models was evaluated by analysing a set of performance indicators. Among the proposed models, artificial neural network exhibited the best performance in predicting the damage in pipeline. As a contribution, this study proposed an effective learning model for damage prediction in buried pipelines subjected to subsurface blast. Results from this study can facilitate designers in computing damage and also in enhancing the impact behaviour, serviceability, and safety of pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Pichler, B.; Hellmich, C.; Mang, H.A.; Eberhardsteiner, J.: Loading of a gravel-buried steel pipe subjected to rockfall. J. Geotech. Geoenviron. Eng. 132(11), 1465–1473 (2006)

    Article  Google Scholar 

  2. Yang, J.L.; Lu, G.Y.; Yu, T.X.; Reid, S.R.: Experimental study and numerical simulation of pipe-on-pipe impact. Int. J. Impact Eng 36(10–11), 1259–1268 (2009)

    Article  Google Scholar 

  3. Tafreshi, S.M.; Khalaj, O.: Analysis of repeated-load laboratory tests on buried plastic pipes in sand. Soil Dyn. Earthq. Eng. 31(1), 1–15 (2011)

    Article  Google Scholar 

  4. Guan, X.; Wang, X.; Zhu, Z.; Zhang, L.; Fu, H.: Ground vibration test and dynamic response of horseshoe-shaped pipeline during tunnel blasting excavation in pebbly sandy soil. Geotech. Geol. Eng. 38(4), 3725–3736 (2020)

    Article  Google Scholar 

  5. Tang, Q.; Jiang, N.; Yao, Y.; Zhou, C.; Wu, T.: Experimental investigation on response characteristics of buried pipelines under surface explosion load. Int. J. Press. Vessels Pip. 183, 104101 (2020)

    Article  Google Scholar 

  6. Rajput, A.; Iqbal, M.A.; Gupta, N.K.: Ballistic performances of concrete targets subjected to long projectile impact. Thin-Walled Struct. 126, 171–181 (2018)

    Article  Google Scholar 

  7. Rajput, A.; Iqbal, M.A.: Impact behavior of plain, reinforced and prestressed concrete targets. Mater. Des. 114, 459–474 (2017)

    Article  Google Scholar 

  8. Rajput, A.; Iqbal, M.A.: Ballistic performance of plain, reinforced and pre-stressed concrete slabs under normal impact by an ogival-nosed projectile. Int. J. Impact Eng 110, 57–71 (2017)

    Article  Google Scholar 

  9. Iqbal, M.A.; Diwakar, A.; Rajput, A.; Gupta, N.K.: Influence of projectile shape and incidence angle on the ballistic limit and failure mechanism of thick steel plates. Theoret. Appl. Fract. Mech. 62, 40–53 (2012)

    Article  Google Scholar 

  10. Kaushik, A.; Patnaik, G.; Rajput, A.; Prakash, G.: Nonlinear behaviour of concrete under low-velocity impact by using a damaged plasticity model. Iran. J. Sci. Technol. Trans. Civ. Eng. (2022). https://doi.org/10.1007/s40996-021-00808-3

  11. Shi, C.; Zhao, Q.; Lei, M.; Peng, M.: Vibration velocity control standard of buried pipeline under blast loading of adjacent tunnel. Soils Found. 59(6), 2195–2205 (2019)

    Article  Google Scholar 

  12. Sklavounos, S.; Rigas, F.: Estimation of safety distances in the vicinity of fuel gas pipelines. J. Loss Prev. Process Ind. 19(1), 24–31 (2006)

    Article  Google Scholar 

  13. Tao, M.; Li, X.; Wu, C.: 3D numerical model for dynamic loading-induced multiple fracture zones around underground cavity faces. Comput. Geotech. 54, 33–45 (2013)

    Article  Google Scholar 

  14. Du, Y.; Ma, L.; Zheng, J.; Zhang, F.; Zhang, A.: Numerical prediction on dynamic fracture of tubes subjected to internal gaseous detonation. Eng. Fail. Anal. 66, 489–501 (2016)

    Article  Google Scholar 

  15. Guo, Y.; Han, Z.; Guo, H.; Wang, T.; Liu, B.; Wang, D.: Numerical simulation damage analysis of pipe-cement-rock combination due to the underwater explosion. Eng. Fail. Anal. 105, 584–596 (2019)

    Article  Google Scholar 

  16. Xia, Y.; Jiang, N.; Zhou, C.; Luo, X.: Safety assessment of upper water pipeline under the blasting vibration induced by Subway tunnel excavation. Eng. Fail. Anal. 104, 626–642 (2019)

    Article  Google Scholar 

  17. Wang, Y.G.; Liao, C.C.; Wang, J.H.; Jeng, D.S.: Dynamic response of pipelines with various burial depth due to underwater explosion. Ocean Eng. 164, 114–126 (2018)

    Article  Google Scholar 

  18. Zhang, J.; Zhang, L.; Liang, Z.: Buckling failure of a buried pipeline subjected to ground explosions. Process Saf. Environ. Prot. 114, 36–47 (2018)

    Article  Google Scholar 

  19. Zhang, J.; Zhang, H.; Zhang, L.; Liang, Z.: Buckling response analysis of buried steel pipe under multiple explosive loadings. J. Pip. Syst. Eng. Pract.ce 11(2), 04020010 (2020)

    Article  Google Scholar 

  20. Olarewaju, A.J.; Kameswara Rao, N.S.V.; Mannan, M.A.: Blast effects on underground pipes. Electron. J. Geotechn. Eng. 15, 645–658 (2010)

    Google Scholar 

  21. Xu, G.F., Deng, Z.D., Deng, F.F., Liu, G.B.: Numerical simulation on the dynamic response of buried pipelines subjected to blast loads. In: Advanced Materials Research (Vol. 671, 519–522) Trans Tech Publications Ltd. (2013).

  22. Guo, Y.; Liu, C.; Wang, D.; He, R.: Numerical study and safety spacing of buried parallel gas pipelines: a study based on TNT equivalent method. Int. J. Press. Vessels Pip. 168, 246–257 (2018)

    Article  Google Scholar 

  23. Grosel, S.; Pachnicz, M.; Różański, A.; Sobótka, M.; Stefaniuk, D.: Influence of bedding and backfill soil type on deformation of buried sewage pipeline. Stud. Geotech. et Mech. 40(4), 313–320 (2018). https://doi.org/10.2478/sgem-2018-0035

    Article  Google Scholar 

  24. Tupa, N.; Palmeira, E.M.: Geosynthetic reinforcement for the reduction of the effects of explosions of internally pressurised buried pipes. Geotext. Geomembr. 25(2), 109–127 (2007)

    Article  Google Scholar 

  25. Giannaros, E.; Kotzakolios, T.; Kostopoulos, V.: Blast response of composite pipeline structure using finite element techniques. J. Compos. Mater. 50(25), 3459–3476 (2016)

    Article  Google Scholar 

  26. Anil, Ö.; Erdem, R.T.; Kantar, E.: Improving the impact behavior of pipes using geofoam layer for protection. Int. J. Press. Vessels Pip. 132, 52–64 (2015)

    Article  Google Scholar 

  27. Patnaik, G.; Kaushik, A.; Rajput, A.; Prakash, G.; Velmurugan, R.: Ballistic performance of quasi-isotropic CFRP laminates under low velocity impact. J. Compos. Mater. 55(24), 3511–3527 (2021)

    Article  Google Scholar 

  28. Patnaik, G., Kaushik, A., Rajput, A., Prakash, G.: Numerical study on perforation characteristics of carbon-fiber reinforced composite laminates subjected to impact loading. In: International Conference on Structural Engineering and Construction Management (pp. 249–263). Springer, Cham (2021).

  29. Torres, V.N.; Silveira, L.G.; Lopes, P.F.; de Lima, H.M.: Assessing and controlling of bench blasting-induced vibrations to minimize impacts to a neighboring community. J. Clean. Prod. 187, 514–524 (2018)

    Article  Google Scholar 

  30. Hasanipanah, M.; Amnieh, H.B.; Arab, H.; Zamzam, M.S.: Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Comput. Appl. 30(4), 1015–1024 (2018)

    Article  Google Scholar 

  31. Yan, Y.; Hou, X.; Fei, H.: Review of predicting the blast-induced ground vibrations to reduce impacts on ambient urban communities. J. Clean. Prod. 260, 121135 (2020)

    Article  Google Scholar 

  32. Armaghani, D.J.; Hajihassani, M.; Sohaei, H.; Mohamad, E.T.; Marto, A.; Motaghedi, H.; Moghaddam, M.R.: Neuro-fuzzy technique to predict air-overpressure induced by blasting. Arab. J. Geosci. 8(12), 10937–10950 (2015)

    Article  Google Scholar 

  33. Lawal, A.I.; Kwon, S.; Kim, G.Y.: Prediction of an environmental impact of tunnel blasting using ordinary artificial neural network, particle swarm and Dragonfly optimized artificial neural networks. Appl. Acoust. 181, 108122 (2021)

    Article  Google Scholar 

  34. Khandelwal, M.; Kankar, P.K.; Harsha, S.P.: Evaluation and prediction of blast induced ground vibration using support vector machine. Min. Sci. Technol. (China) 20(1), 64–70 (2010)

    Article  Google Scholar 

  35. Sheykhi, H.; Bagherpour, R.; Ghasemi, E.; Kalhori, H.: Forecasting ground vibration due to rock blasting: a hybrid intelligent approach using support vector regression and fuzzy C-means clustering. Eng. Comput. 34(2), 357–365 (2018)

    Article  Google Scholar 

  36. Cabrera, J.M.; Rajput, A.; Iqbal, M.A.; Gupta, N.K.: Performance of various thin concrete slabs under projectile impact: Sobol’s sensitivity analysis with aid of metamodels. Thin-Walled Struct. 172, 108739 (2022)

    Article  Google Scholar 

  37. Liao, K.; Yao, Q.; Wu, X.; Jia, W.: A numerical corrosion rate prediction method for direct assessment of wet gas gathering pipelines internal corrosion. Energies 5(10), 3892–3907 (2012)

    Article  Google Scholar 

  38. Noor, N.M.; Yahaya, N.; Ozman, N.A.N.; Othman, S.R.: The forecasting residual life of corroding pipeline based on semi-probabilistic method. J. Civ. Eng. Sci. Technol. 1(2), 1–6 (2010)

    Article  Google Scholar 

  39. Carvalho, A.A.; Rebello, J.M.A.; Sagrilo, L.V.S.; Camerini, C.S.; Miranda, I.V.J.: MFL signals and artificial neural networks applied to detection and classification of pipe weld defects. NDT E Int. 39(8), 661–667 (2006)

    Article  Google Scholar 

  40. Peng, X.Y., Zhang, P., Chen, L.Q.: Long-distance oil/gas pipeline failure rate prediction based on fuzzy neural network model. In: 2009 WRI World Congress on Computer Science and Information Engineering, vol. 5, pp. 651–655 IEEE (2009).

  41. Abaqus, V.: 6.14–1. Abaqus/standard user’s manual and Abaqus CAE manual. Providence, RI, USA: Dassault Systemes Simulia Corp. (2014).

  42. Mohitpour, M., Golshan, H., Murray, M.A.: Pipeline design & construction: a practical approach. Amer Society of Mechanical (2003).

  43. Menon, E.S.: Gas Pipeline Hydraulics. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  44. ASME B31 Committee. Gas Transmission and Distribution Piping Systems: ASME Code for Pressure Piping, B31. American Society of Mechanical Engineers (1999).

  45. Song, K.; Long, Y.; Ji, C.; Gao, F.; Chen, H.: Experimental and numerical studies on the deformation and tearing of X70 pipelines subjected to localized blast loading. Thin-Walled Struct. 107, 156–168 (2016)

    Article  Google Scholar 

  46. Amli, A.; Sabah, A.; Al-Ansari, N.; Laue, J.: Study numerical simulation of stress-strain behavior of reinforced concrete bar in soil using theoretical models. Civ. Eng. J. 11(5), 2349–2358 (2019)

    Article  Google Scholar 

  47. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980). https://doi.org/10.1115/1.3153664

    Article  Google Scholar 

  48. Wang, Z.; Lu, Y.; Hao, H.; Chong, K.: A full coupled numerical analysis approach for buried structures subjected to subsurface blast. Comput. Struct. 83(4–5), 339–356 (2005)

    Article  Google Scholar 

  49. Esparza, E.D., Westine, P.S., Wenzel, A.B.: Pipeline response to buried explosive detonations, Southwest Research Institute Report to the American Gas Association, AGA Project. PR-15–109 (1981).

  50. Kouretzis, G.P.; Bouckovalas, G.D.; Gantes, C.J.: Analytical calculation of blast-induced strains to buried pipelines. Int. J. Impact Eng 34(10), 1683–1704 (2007)

    Article  Google Scholar 

  51. Station, U.A.E.W.E.: TM5–855–1 Fundamentals of protective design for conventional weapons. US Army, Navy and Air Force, US Government Printing Office, Washington DC (1986).

  52. Gurney, K.: An Introduction to Neural Networks. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rajput.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnaik, G., Kaushik, A., Singh, M.J. et al. Damage Prediction of Underground Pipelines Subjected to Blast Loading. Arab J Sci Eng 47, 13559–13578 (2022). https://doi.org/10.1007/s13369-022-06920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06920-4

Keywords

Navigation