Skip to main content

Advertisement

Log in

Exergoeconomic Optimization of an Integrated Supercritical CO2 Power Plant and Ejector-Based Refrigeration System for Electricity and Cooling Production

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a cogeneration supercritical CO2 recompression Brayton cycle (SCRBC) integrated with an ejector refrigeration cycle (ERC). The system uses the waste heat of SCRBC to drive ERC to produce both electricity and cooling effect. The generator of ERC cools the hot CO2 before entering the compressor and simultaneously heats the ERC refrigerant. Ammonia is selected as a working refrigerant in the ERC. A comprehensive thermodynamic and exergoeconomic study examines a base case of the SCRBC/ERC plant. A sensitivity study is conducted to identify the substantial parameters needed for multi-objective optimization (MOO), which balances cost-saving and energy efficiency. Because the proposed plant produces two useful outputs, electricity and cooling effect, three MOO cases are investigated to enhance the plant performance. Case (1) maximizes the energy utilization factor and minimizes the total product unit cost. Case (2) provides a compromise between the cost of exergy destruction per unit product exergy and the plant investment cost per product exergy unit. Finally, case (3) focuses on finding the best trade-off between the proposed plant's electricity cost and second-law efficiency. The optimization study indicates that case (3) provides the lowest cost of products at the maximum energy and exergy efficiencies. According to it, 13.45 MW for electric power and 4.47 MW for cooling effect are delivered at an evaporator temperature of 5 °C, which is more suitable for cooling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

Area, m2

AR:

Area ratio of ejector

c :

Cost per exergy unit, $/GJ

\(\dot{C}\) :

Cost rate, $/h

\({c}_{p,\mathrm{tot}}\) :

Total product unit cost, $/GJ

\(\dot{E}\) :

Exergy, W

\(f\) :

Exergo-economic factor, %

h :

Specific enthalpy, J/kg

\(\dot{m}\) :

Mass flow rate, kg/s

P :

Pressure, Pa

PR:

Pressure ratio

\(\dot{Q}\) :

Heat transfer rate, W

SR:

Split ratio

T :

Temperature, K

U:

Uncertainty, ±

\(\dot{W}\) :

Power, W

Z :

Capital cost, $

\({\dot{Z}}_{k,\mathrm{tot}}\) :

Total capital cost rate of the plant, $/h

η:

efficiency, %

ε:

effectiveness

\(\varphi\) :

maintenance factor

c:

Condenser

D:

Destruction

e:

Evaporator

ex:

Exergy

F:

Fuel

g:

Generator

MC:

Main compressor

P:

Pump, product

pc:

Pre-cooler

R:

Reactor

RC:

Re-compressor

s:

Isentropic

T:

Turbine

th:

Thermal

tot:

Total

CI:

Capital investment

M:

Mechanical

T:

Thermal

AB:

Absorption

ABC:

Absorption cooling

CORP:

Coefficient of refrigeration performance

CRF:

Capital recovery factor

DVs:

Decision variables

ERC:

Ejector refrigeration cycle

EUF:

Energy utilization factor

LCOE:

Levelized cost of energy, $/kWh

MED:

Multiple-effect distillation

MOO:

Multi-objective optimization

OF:

Objective function

ORC:

Organic Rankine cycle

SCRBC:

Supercritical carbon dioxide recompression Brayton cycle

TD:

Thermal desalination

References

  1. The Future of Cooling: Futur Cool (2018). https://doi.org/10.1787/9789264301993-en

    Article  Google Scholar 

  2. Goldstein, E.A.; Raman, A.P.; Fan, S.: Sub-ambient non-evaporative fluid cooling with the sky. Nat Energy 2, 1–7 (2017). https://doi.org/10.1038/nenergy.2017.143

    Article  Google Scholar 

  3. Mohammed RH, Askalany AA. Productivity improvements of adsorption desalination systems. Green Energy Technol., Springer; (2019), p. 325–57. https://doi.org/10.1007/978-981-13-6887-5_15.

  4. Ehsan, M.M.; Wang, X.; Guan, Z.; Klimenko, A.Y.: Design and performance study of dry cooling system for 25 MW solar power plant operated with supercritical CO2 cycle. Int J Therm Sci 132, 398–410 (2018). https://doi.org/10.1016/j.ijthermalsci.2018.06.024

    Article  Google Scholar 

  5. Penkuhn, M.; Tsatsaronis, G.: Systematic evaluation of efficiency improvement options for sCO2 Brayton cycles. Energy 2020;210. https://doi.org/10.1016/j.energy.2020.118476.

  6. Angelino, G.: Carbon dioxide condensation cycles for power production. J Eng Gas Turbines Power 90, 287–295 (1968). https://doi.org/10.1115/1.3609190

    Article  Google Scholar 

  7. Dostal, V.; Driscoll, M. J.; Hejzlar, P.; Todreas, N. E.: A supercritical CO2 gas turbine power cycle for next-generation nuclear reactors. Int. Conf. Nucl. Eng. Proceedings, ICONE, vol. 2, American Society of Mechanical Engineers; 2002, p. 567–74. https://doi.org/10.1115/ICONE10-22192.

  8. Luu, M.T.; Milani, D.; McNaughton, R.; Abbas, A.: Analysis for flexible operation of supercritical CO2 Brayton cycle integrated with solar thermal systems. Energy 124, 752–771 (2017). https://doi.org/10.1016/j.energy.2017.02.040

    Article  Google Scholar 

  9. Marchionni, M.; Bianchi, G.; Tsamos, K.M.; Tassou, S.A.: Techno-economic comparison of different cycle architectures for high temperature waste heat to power conversion systems using CO2 in supercritical phase. Energy Procedia 123, 305–312 (2017). https://doi.org/10.1016/j.egypro.2017.07.253

    Article  Google Scholar 

  10. Ma, Y.; Zhang, X.; Liu, M.; Yan, J.; Liu, J.: Proposal and assessment of a novel supercritical CO2 Brayton cycle integrated with LiBr absorption chiller for concentrated solar power applications. Energy 148, 839–854 (2018). https://doi.org/10.1016/j.energy.2018.01.155

    Article  Google Scholar 

  11. Mohammed, R.H.; Alsagri, A.S.; Wang, X.: Performance improvement of supercritical carbon dioxide power cycles through its integration with bottoming heat recovery cycles and advanced heat exchanger design: A review. Int J Energy Res 44, 7108–7135 (2020). https://doi.org/10.1002/er.5319

    Article  Google Scholar 

  12. Fan, G.; Li, H.; Du, Y.; Zheng, S.; Chen, K.; Dai, Y.: Preliminary conceptual design and thermo-economic analysis of a combined cooling, heating and power system based on supercritical carbon dioxide cycle. Energy 203, 117842 (2020). https://doi.org/10.1016/j.energy.2020.117842

    Article  Google Scholar 

  13. Osorio, J.D.; Hovsapian, R.; Ordonez, J.C.: Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under different seasonal conditions. Energy 115, 353–368 (2016). https://doi.org/10.1016/j.energy.2016.08.074

    Article  Google Scholar 

  14. He, W.F.; Zhu, W.P.; Xia, J.R.; Han, D.: A mechanical vapor compression desalination system coupled with a transcritical carbon dioxide Rankine cycle. Desalination 425, 1–11 (2018). https://doi.org/10.1016/j.desal.2017.10.009

    Article  Google Scholar 

  15. Sharan, P.; Neises, T.; Turchi, C.: Thermal desalination via supercritical CO2 Brayton cycle: Optimal system design and techno-economic analysis without reduction in cycle efficiency. Appl Therm Eng 152, 499–514 (2019). https://doi.org/10.1016/j.applthermaleng.2019.02.039

    Article  Google Scholar 

  16. Lee, W.W.; Bae, S.J.; Jung, Y.H.; Yoon, H.J.; Jeong, Y.H.; Lee, J.I.: Improving power and desalination capabilities of a large nuclear power plant with supercritical CO2 power technology. Desalination 409, 136–145 (2017). https://doi.org/10.1016/j.desal.2017.01.013

    Article  Google Scholar 

  17. Singh, H.; Mishra, R.S.: Performance analysis of solar parabolic trough collectors driven combined supercritical CO2 and organic Rankine cycle. Eng Sci Technol an Int J 21, 451–464 (2018). https://doi.org/10.1016/j.jestch.2018.03.015

    Article  Google Scholar 

  18. Wang, X.; Dai, Y.: Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study. Appl Energy 170, 193–207 (2016). https://doi.org/10.1016/j.apenergy.2016.02.112

    Article  Google Scholar 

  19. Ma, Y.; Liu, M.; Yan, J.; Liu, J.: Performance investigation of a novel closed Brayton cycle using supercritical CO2-based mixture as working fluid integrated with a LiBr absorption chiller. Appl Therm Eng 141, 531–547 (2018). https://doi.org/10.1016/j.applthermaleng.2018.06.008

    Article  Google Scholar 

  20. Popli, S.; Rodgers, P.; Eveloy, V.: Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry. Appl Therm Eng 50, 918–931 (2013). https://doi.org/10.1016/j.applthermaleng.2012.06.018

    Article  Google Scholar 

  21. Wu, C.; Wang, S. sen.; Feng X. jia; Li, J.; Energy, exergy and exergoeconomic analyses of a combined supercritical CO2 recompression Brayton/absorption refrigeration cycle. Energy Convers Manag;148:360–77 (2017). https://doi.org/10.1016/j.enconman.2017.05.042.

  22. Mohammed, R. H.; Qasem, N.A.A.; Zubair, S.M.: Enhancing the thermal and economic performance of supercritical CO2 plant by waste heat recovery using an ejector refrigeration cycle. Energy Convers Manag, p. 224 (2020). https://doi.org/10.1016/j.enconman.2020.113340.

  23. Li, H.; Xu, M.; Yan, X.; Li, J.; Su, W.; Wang, J., et al.: Preliminary conceptual exploration about performance improvement on supercritical CO2 power system via integrating with different absorption power generation systems. Energy Convers Manag 173, 219–232 (2018). https://doi.org/10.1016/j.enconman.2018.07.075

    Article  Google Scholar 

  24. Wu, C.; Xu, X.; Li, Q.; Li, J.; Wang, S.; Liu, C.: Proposal and assessment of a combined cooling and power system based on the regenerative supercritical carbon dioxide Brayton cycle integrated with an absorption refrigeration cycle for engine waste heat recovery. Energy Convers Manag, p 207 (2020). https://doi.org/10.1016/j.enconman.2020.112527.

  25. Li, H.; Su, W.; Cao, L.; Chang, F.; Xia, W.; Dai, Y.: Preliminary conceptual design and thermodynamic comparative study on vapor absorption refrigeration cycles integrated with a supercritical CO2 power cycle. Energy Convers Manag 161, 162–171 (2018). https://doi.org/10.1016/j.enconman.2018.01.065

    Article  Google Scholar 

  26. Hou, S.; Cao, S.; Yu, L.; Zhou, Y.; Wu, Y.; Zhang, F.Y.: Performance optimization of combined supercritical CO2 recompression cycle and regenerative organic Rankine cycle using zeotropic mixture fluid. Energy Convers Manag 166, 187–200 (2018). https://doi.org/10.1016/j.enconman.2018.04.025

    Article  Google Scholar 

  27. Lemmon, E.W.; Huber, M.L.; McLinden, M. O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.0. Phys Chem Prop., p. 22 (2010).

  28. Elsayed, M.L.; Mesalhy, O.; Mohammed, R.H.; Chow, L.C.: Transient and thermo-economic analysis of MED-MVC desalination system. Energy 167, 283–296 (2019). https://doi.org/10.1016/j.energy.2018.10.145

    Article  Google Scholar 

  29. Elbassoussi, M.H.; Mohammed, R.H.; Zubair, S.M.: Thermoeconomic assessment of an adsorption cooling/desalination cycle coupled with a water-heated humidification-dehumidification desalination unit. Energy Convers Manag 223, 113270 (2020). https://doi.org/10.1016/j.enconman.2020.113270

    Article  Google Scholar 

  30. Seshadri, K.: Thermal design and optimization. vol. 21. New York: Wiley (1996). https://doi.org/10.1016/s0360-5442(96)90000-6.

  31. Chen, C.K.; Su, Y.F.: Exergetic efficiency optimization for an irreversible Brayton refrigeration cycle. Int J Therm Sci 44, 303–310 (2005). https://doi.org/10.1016/j.ijthermalsci.2004.09.003

    Article  Google Scholar 

  32. Misra, R.D.; Sahoo, P.K.; Sahoo, S.; Gupta, A.: Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system. Int J Refrig 26, 158–169 (2003). https://doi.org/10.1016/S0140-7007(02)00086-5

    Article  Google Scholar 

  33. Zhang, L.; Pan, Z.; Yu, J.; Zhang, N.; Zhang, Z.: Multiobjective optimization for exergoeconomic analysis of an integrated cogeneration system. Int J Energy Res 43, 1868–1881 (2019). https://doi.org/10.1002/er.4429

    Article  Google Scholar 

  34. Ahmadi, P.; Almasi, A.; Shahriyari, M.; Dincer, I.: Multi-objective optimization of a combined heat and power (CHP) system for heating purpose in a paper mill using evolutionary algorithm. Int J Energy Res 36, 46–63 (2012). https://doi.org/10.1002/er.1781

    Article  Google Scholar 

  35. Dincer, I., Rosen, M.A.: Exergy and Multiobjective Optimization. Exergy, p. 483–98 (2013). https://doi.org/10.1016/b978-0-08-097089-9.00024-3.

  36. Holagh, S.G.; Haghghi, M.A.; Mohammadi, Z.; Chitsaz, A.: Exergoeconomic and environmental investigation of an innovative poly-generation plant driven by a solid oxide fuel cell for production of electricity, cooling, desalinated water, and hydrogen. Int J Energy Res 44, 10126–10154 (2020). https://doi.org/10.1002/er.5626

    Article  Google Scholar 

  37. Ameri, M.; Ahmadi, P.; Hamidi, A.: Energy, exergy and exergoeconomic analysis of a steam power plant: A case study. Int J Energy Res 33, 499–512 (2009). https://doi.org/10.1002/er.1495

    Article  Google Scholar 

  38. Chemical Engineering.: Chemical Engineering Plant Cost Index annual average. Bus Econ 2020:1–7 (2019). https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/. Accessed September 15, 2020.

  39. Zhong, L.; Yao, E.; Dang, Z.; Hu, Y.; Zou, H.; Xi, G.: Conceptual design and performance analysis of a novel CHP system integrated with solid oxide fuel cell and supercritical CO2 partial preheating cycle. Int J Energy Res 45, 3801–3820 (2021). https://doi.org/10.1002/er.6033

    Article  Google Scholar 

  40. Rangel-Hernández, V.H.; Belman-Flores, J.M.; Rodríguez-Valderrama, D.A.; Pardo-Cely, D.; Rodríguez-Muñoz, A.P.; Ramírez-Minguela, J.J.: Exergoeconomic performance comparison of R1234yf as a drop-in replacement for R134a in a domestic refrigerator. Int J Refrig 100, 113–123 (2019). https://doi.org/10.1016/j.ijrefrig.2019.01.016

    Article  Google Scholar 

  41. Mohammed, R.H.; Ibrahim, M.M.; Abu-Heiba, A.: Exergoeconomic and multiobjective optimization analyses of an organic Rankine cycle integrated with multi-effect desalination for electricity, cooling, heating power, and freshwater production. Energy Convers Manag, p. 231 (2021). https://doi.org/10.1016/j.enconman.2021.113826.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed M. Zubair.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, R.H., Qasem, N.A.A. & Zubair, S.M. Exergoeconomic Optimization of an Integrated Supercritical CO2 Power Plant and Ejector-Based Refrigeration System for Electricity and Cooling Production. Arab J Sci Eng 47, 9137–9149 (2022). https://doi.org/10.1007/s13369-021-06414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06414-9

Keywords

Navigation