Skip to main content
Log in

Solving Graph Coloring Problem Using Divide and Conquer-Based Turbulent Particle Swarm Optimization

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The graph coloring problem, an NP-hard combinatorial optimization problem, is required in some engineering applications. This research focuses on the requirement of designing a new particle swarm optimization model to minimize the search space and generations. This stochastic method is developed using divide and conquer with improved strategies to offset the problems in the well-known existing ways. The divide and conquer strategy splits the vertex set of graph G into two subsets, and then, the subsets are solved to reduce the search space. The advanced neighborhood search operator is applied to a particle for a fixed number of iterations to improve its position to obtain the best neighborhood. The modified turbulent strategy is designed to overcome the problem of getting a divergent solution. The iterative fitness assessment and walking one strategy are applied to identify the maximum conflicting vertices and assign a set of valid colors. The behavioral analysis of this stochastic search model reveals that premature convergence is primarily caused by the decrease in the velocity of particles in the search space that leads to a total implosion and, ultimately, fitness stagnation of the swarm. The lazy particles are driven out for exploring new search spaces to avoid premature convergence. The experimental results of this method have revealed that a better near-optimal solution is obtained for some of the critical benchmark graphs compared with the state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Balakrishnan, R.; Ranganathan, K.: A Textbook of Graph Theory, 1st edn. Springer, New York Publisher (2000)

    Book  Google Scholar 

  2. Garey, M.R.; Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and Company, New York (1979)

  3. Timir, M.; Pal, A.J.; Debnath, B.; Tai-hoon, K.: Noise reduction in VLSI circuits using modified GA based graph coloring. Int. J. Control Autom. 3(2) (2010)

  4. Hertz, A.; De Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)

  5. Christine, L.: Mumford: new order based crossovers for the graph coloring problem. Parallel Prob. Solv. Nature 4193, 880–889 (2006)

    Google Scholar 

  6. Isabel, M.-D.; Paula, Z.: A Branch and Cut algorithm for graph coloring. Discret. Appl. Math. 154, 826–847 (2006)

    Article  MathSciNet  Google Scholar 

  7. Monasson, R.: On the analysis of backtrack procedures for the coloring of random graphs. Lect. Notes Phys. 650, 235–254 (2004)

    Article  MathSciNet  Google Scholar 

  8. Eiben, A.E.; Van Der Hauw, J.K.; Van Hemert, J.I.: Graph coloring with adaptive evolutionary algorithms. J. Heuristic. 4, 25–46 (1998)

    Article  Google Scholar 

  9. Yongquan, Z.; Hongqing, Z.; Qifang, L.; Jinzhao, W.: An improved cuckoo search algorithm for solving planar graph coloring problem. Appl. Math. Inf. Sci. 7(2), 785–792 (2013)

    Article  MathSciNet  Google Scholar 

  10. Prestwich, S.: Generalised graph coloring by a hybrid of local search and constraint programming. Discret. Appl. Math. 156, 148–158 (2008)

    Article  MathSciNet  Google Scholar 

  11. Igor, D.; Franz, R.: A semidefinite programming-based heuristic for graph coloring. Discret. Appl. Math. 156, 180–189 (2008)

    Article  MathSciNet  Google Scholar 

  12. Bui, T.N.; Nguyen, T.H.; Patel, C.M.; Phan, K.-A.T.: An ant-based algorithm for coloring graphs. Discret. Appl. Math. 156, 190–200 (2008)

    Article  MathSciNet  Google Scholar 

  13. Anuj, M.; Michael, A.T.: A column generation approach for graph coloring. INFORMS J. Comput. 8, 344–354 (1995)

    MATH  Google Scholar 

  14. Pablo, S.S.: A new DSATUR-based algorithm for exact vertex coloring. Comput. Oper. Res. 39(7), 1724–1733 (2012)

    Article  MathSciNet  Google Scholar 

  15. Ling-Yuan, H.; Shi-Jinn, H.; Pingzhi, F.; Muhammad, K.K.; Yuh-Rau, W.; Ray-Shine, R.; Jui-Lin, L.; Rong-Jian, C.: MTPSO algorithm for solving planar graph coloring problem. Expert Syst. Appl. 38, 5525–5531 (2011)

    Article  Google Scholar 

  16. Israel, R.R.; Manuel, G.R.: Gravitational Swarm Approach for Graph Coloring. Springer, Berlin, Heidelberg 2011, 159-168 (2011)

  17. Israel, R.R.; Manuel, G.R.: Further results of gravitational swarm intelligence for graph coloring. Nature Biol. Inspired Comput. 183–188 (2011)

  18. Jin, Q.; Yi-xin, Y.; Xiao-juan, B.: Hybrid discrete particle swarm algorithm for graph coloring problem. J. Comput. 6(6) (2011)

  19. Manuel, G.; Blanca, C.; Carmen, H.; Alicia, D.: Further Results on Swarms Solving Graph Coloring. ICCSA, Part III, LNCS 6018, Springer, Berlin, Heidelberg, 541–551 (2010)

  20. Guangzhao, C.; Limin, Q.; Sha, L.; Yanfeng, W.; Xuncai, Z.; Xianghong, C.: Modified PSO algorithm for solving planar graph coloring problem. Progress Natural Sci. 18, 353–357 (2008)

    Article  Google Scholar 

  21. Xiang’en, C.; Yue, Z.; Jin, X.; Zhiwen, W.; Bing, Y.: Vertex-distinguishing E-total colorings of graphs. Arab. J. Sci. Eng. 36(8), 1485–1500 (2011)

    Article  MathSciNet  Google Scholar 

  22. Philippe, G.; Jin-Kao, H.: Hybrid evolutionary algorithms for graph coloring. J. Combin. Optim. 3(4), 379–397 (1999)

    Article  MathSciNet  Google Scholar 

  23. Lewis, R.M.R.: A guide to Graph Coloring, Algorithms and Applications. Springer (2016)

  24. Marc, D.; Tınaz, E.; Bernard, R.; Cerasela, T.: On some applications of the selective graph coloring problem. Eur. J. Oper. Res. (2014)

  25. Marc, D.; Tınaz, E.; Bernard, R.: On the minimum and maximum selective graph coloring problems in some graph classes. Discret. Appl. Math. (2015)

  26. Lynn, T.: Coloring signed graphs (2016)

  27. Edita, M.; Andre, R.; Martin, S.: The chromatic number of a signed graph (2016)

  28. Mohamed, A.; Ahmed, S.: Automated Academic Schedule Builder for University’s Faculties. In: Proceedings of the World Congress on Engineering (2016)

  29. Sandeep, S.; Ravinder, K.: Graph coloring based optimized algorithm for resource utilization in examination scheduling. Appl. Math. Inf. Sci. (2016)

  30. Tawfiq, F.M.O.; Al-qahtani, K.K.S.: Graph coloring applied to medical doctors schedule. In: The 10th International Conference on Advanced Engineering Computing and Applications in Sciences (2016)

  31. Simon, T.; Nicolas, Z.; Jean-Y, P.: Graph multi-coloring for a job scheduling application. CIRRELT (2016)

  32. Bing, Z.: On the maximum number of dominating classes in graph coloring. Open J. Discret. Math. (2016)

  33. Serge, G., Lee, E.D.: Faster graph coloring in polynomial space (2016)

  34. Angelini P.; Bekos M.A.; De Luca F.; Didimo, W.; Kaufmann, M.; Kobourov, S.; Montecchiani, F.; Raftopoulou, C.N.; Roselli, V.; Symvonis, A.: Vertex-coloring with defects. J. Graph Algorith. Appl. (2017)

  35. Galán, S.F.: Simple decentralized graph coloring. Comput. Optim. Appl. (2017)

  36. Murat, A.; Nurdan, A.B.: A performance comparison of graph coloring algorithms. Int. J. Intel. Syst. Appl. Eng. (2016)

  37. Raja, M.; Gopalakrishnan, S.: Solution to graph coloring using genetic and tabu search procedures. Arab. J. Sci. Eng. 43, 525–542 (2018)

    Article  Google Scholar 

  38. Jitendra, A.; Shikha, A.: Acceleration based particle swarm optimization for graph coloring problem. Procedia Comput. Sci. 60, 714–721 (2015)

    Article  Google Scholar 

  39. Kui, C.; Hitoshi, K.: Solving the graph coloring problem using Adaptive Artificial Bee Colony. https://doi.org/10.11394/tjpnsec.9.103

  40. Morteza, D.; Hossein, Y.M: Algorithms for the graph coloring problem based on swarm intelligence. In: The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012)

Download references

Acknowledgements

The authors would like to acknowledge the support rendered by the Management of SASTRA Deemed University for providing the financial support and BRNS, India, for providing the necessary infrastructure procured for the project No. 2013/36/40-BRNS/2305. The authors would like to thank Gary Lewandowski and Michael Trick for uploading the graph repository to World Wide Web Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopalakrishnan Sethumadhavan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper."

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marappan, R., Sethumadhavan, G. Solving Graph Coloring Problem Using Divide and Conquer-Based Turbulent Particle Swarm Optimization. Arab J Sci Eng 47, 9695–9712 (2022). https://doi.org/10.1007/s13369-021-06323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06323-x

Keywords

Navigation