Skip to main content
Log in

Optimization, Modeling and Implementation of Plant Water Consumption Control Using Genetic Algorithm and Artificial Neural Network in a Hybrid Structure

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Smart and water-saving systems recommended for agricultural irrigation are of great importance for countries and regions with limited water resources. Thus, it is aimed to develop a cost-efficient smart irrigation system that can be monitored by smart devices and smart phones for walnut plants using an artificial neural network. Accordingly, three different artificial neural network models based on temperature (HM1), temperature–soil moisture value (HM2), and temperature–soil moisture–plant life cycle (HM3) are formed to estimate the water needs of the plant considering climatic and environmental factors. The optimization of parameters used in artificial neural networks is realized with the genetic algorithm by building a hybrid structure to acquire the maximum efficiency of smart irrigation systems in three different models formed. In the estimation of irrigation program formed according to the reference evapotranspiration (ETo) estimated by the FAO Penman–Monteith equation and the relevant evapotranspiration (ETc) value of the walnut plant, HM2 model provides more efficient results than HM1 by 16.6% and HM3 by 6.5%. The optimal smart irrigation system presented by the hybrid model in line with HM2, the most successful model, is analyzed, and an application is created using data obtained. Additionally, which input parameters should be used to obtain more efficient results in the smart irrigation system is optimized with the developed hybrid structures. The presented smart irrigation system consumes less water and provides savings regarding water consumption measurements and manpower compared to classical methods such as wild irrigation, which cannot be measured and consume too much water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Işık, M.; Sönmez, Y.; Yılmaz, C.; Özdemir, V.; Yılmaz, E.: Precision irrigation system (PIS) using sensor network technology integrated with IOS/android application. Appl. Sci. 7, 891 (2017). https://doi.org/10.3390/app7090891

    Article  Google Scholar 

  2. Bjornlund, H.; van Rooyen, A.; Pittock, J.; Parry, K.; Moyo, M.; Mdemu, M.; de Sousa, W.: Institutional innovation and smart water management technologies in small-scale irrigation schemes in southern Africa. Water Int. (2020). https://doi.org/10.1080/02508060.2020.1804715

    Article  Google Scholar 

  3. Kumar, S.: Reference evapotranspiration (ETo) and irrigation water requirement of different crops in Bihar. J. Agrometeorol. 19(3), 238–241 (2017)

    Google Scholar 

  4. Car, N.J.; Christen, E.W.; Hornbuckle, J.W.; Moore, G.A.: Using a mobile phone Short Messaging Service (SMS) for irrigation scheduling in Australia: farmers’ participation and utility evaluation. Comput. Electron. Agric. (2012). https://doi.org/10.1016/j.compag.2012.03.003

    Article  Google Scholar 

  5. Lajara, R.; Alberola, J.; Pelegrí-Sebastiá, J.: A solar energy powered autonomous wireless actuator node for irrigation systems. Sensors (2011). https://doi.org/10.3390/s110100329

    Article  Google Scholar 

  6. Li, Z.; Wang, N.; Hong, T.S.; Franzen, A.; Li, J.N.: Closed-loop drip irrigation control using a hybrid wireless sensor and actuator network. Sci. China Inf. Sci. (2011). https://doi.org/10.1007/s11432-010-4086-6

    Article  MATH  Google Scholar 

  7. Ricart, S.; Rico, A.; Kirk, N.; Bülow, F.; Ribas-Palom, A.; Pavón, D.: How to improve water governance in multifunctional irrigation systems? Balancing stakeholder engagement in hydrosocial territories. Int. J. Water Resour. Dev. (2018). https://doi.org/10.1080/07900627.2018.1447911

    Article  Google Scholar 

  8. Awada, H.; Ciraolo, G.; Maltese, A.; Provenzano, G.; Moreno Hidalgo, M.A.; Còrcoles, J.I.: Assessing the performance of a large-scale irrigation system by estimations of actual evapotranspiration obtained by Landsat satellite images resampled with cubic convolution. Int. J. Appl. Earth Obs. Geoinf. (2019). https://doi.org/10.1016/j.jag.2018.10.016

    Article  Google Scholar 

  9. Zhang, F.; Guo, S.; Zhang, C.; Guo, P.: An interval multiobjective approach considering irrigation canal system conditions for managing irrigation water. J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2018.11.111

    Article  Google Scholar 

  10. Poyen, F.; Hazra, S.; Sengupta, N.; Ghosh, A.; Kundu, P.: Smart automatic irrigation controller. Curr. Sci. (2020). https://doi.org/10.18520/cs/v118/i6/969-976

    Article  Google Scholar 

  11. Alomar, B.; Alazzam, A.: A smart irrigation system using IoT and fuzzy logic controller ITT 2018. Inf. Technol. Trends Emerg. Technol. Artif. Intell. (2019). https://doi.org/10.1109/CTIT.2018.8649531

    Article  Google Scholar 

  12. Fierro-Chacon, A.; Torres-Tello, J.: Fuzzy logic that determines sky conditions as a key component of a smart irrigation system. In: 2019 6th International Conference on eDemocracy and eGovernment, ICEDEG 2019 (2019). https://doi.org/10.1109/ICEDEG.2019.8734313

  13. Hamouda, Y.E.M.: Smart irrigation decision support based on fuzzy logic using wireless sensor network. In: Proceedings - 2017 International Conference on Promising Electronic Technologies, ICPET 2017 (2017). https://doi.org/10.1109/ICPET.2017.26

  14. Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Rodrigues, T.F.: A smartphone APP for weather-based irrigation scheduling using artificial neural networks. Pesqui. Agropecu. Bras. (2020). https://doi.org/10.1590/S1678-3921.PAB2020.V55.01839

    Article  Google Scholar 

  15. Dursun, M.; Özden, S.: Optimization of soil moisture sensor placement for a PV-powered drip irrigation system using a genetic algorithm and artificial neural network. Electr. Eng. (2017). https://doi.org/10.1007/s00202-016-0436-8

    Article  Google Scholar 

  16. Cruz, J.R.D.; Baldovino, R.G.; Bandala, A.A.; Dadios, E.P.: Water usage optimization of Smart Farm Automated Irrigation System using artificial neural network. In: 2017 5th International Conference on Information and Communication Technology, ICoIC7 2017 (2017). https://doi.org/10.1109/ICoICT.2017.8074668

  17. Angelopoulos, C.M.; Filios, G.; Nikoletseas, S.; Raptis, T.P.: Keeping data at the edge of smart irrigation networks: a case study in strawberry greenhouses. Comput. Networks (2020). https://doi.org/10.1016/j.comnet.2019.107039

    Article  Google Scholar 

  18. Campos, N.G.S.; Rocha, A.R.; Gondim, R.; da Silva, T.L.C.; Gomes, D.G.: Smart & green: an internet-of-things framework for smart irrigation. Sensors (Switzerland) (2020). https://doi.org/10.3390/s20010190

    Article  Google Scholar 

  19. Canales-Ide, F.; Zubelzu, S.; Rodríguez-Sinobas, L.: Irrigation systems in smart cities coping with water scarcity: the case of valdebebas, Madrid (Spain). J. Environ. Manage. (2019). https://doi.org/10.1016/j.jenvman.2019.06.062

    Article  Google Scholar 

  20. De Ocampo, A.L.P.; Dadios, E.P.: Energy cost optimization in irrigation system of smart farm by using genetic algorithm. In: HNICEM 2017 - 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (2017). https://doi.org/10.1109/HNICEM.2017.8269497

  21. Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Fernandes Filho, E.I.: Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM: a new approach. J. Hydrol. 572, 556–570 (2019). https://doi.org/10.1016/j.jhydrol.2019.03.028

    Article  Google Scholar 

  22. Karimi, B.; Mohammadi, P.; Sanikhani, H.; Salih, S.Q.; Yaseen, Z.M.: Modeling wetted areas of moisture bulb for drip irrigation systems: an enhanced empirical model and artificial neural network. Comput. Electron. Agric. 178, 105767 (2020). https://doi.org/10.1016/j.compag.2020.105767

    Article  Google Scholar 

  23. Al-Naji, A.; Fakhri, A.B.; Gharghan, S.K.; Chahl, J.: Soil color analysis based on a RGB camera and an artificial neural network towards smart irrigation: a pilot study. Heliyon 7, e06078 (2021). https://doi.org/10.1016/j.heliyon.2021.e06078

    Article  Google Scholar 

  24. Mantri, S.; Bullock, D.: Analysis of feedforward-backpropagation neural networks used in vehicle detection. Transp. Res. Part C 3, 161–174 (1995). https://doi.org/10.1016/0968-090X(95)00004-3

    Article  Google Scholar 

  25. Schiller, H.; Doerffer, R.: Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data. Int. J. Remote Sens. 20, 1735–1746 (1999). https://doi.org/10.1080/014311699212443

    Article  Google Scholar 

  26. Shaik, N.B.; Pedapati, S.R.; Ammar Taqvi, S.A.; Othman, A.R.; Abd Dzubir, F.A.: A feed-forward back propagation neural network approach to predict the life condition of crude oil pipeline. Processes (2020). https://doi.org/10.3390/PR8060661

    Article  Google Scholar 

  27. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.: Crop evapotranspiration: guidelines for computing crop requirements. Irrigation and drainage paper 56. 300(9), D05109 (1998)

  28. Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; Smith, M.; Pereira, L.S.; Raes, D.; Perrier, A.; Alves, I.; Walter, I.; Elliott, R.: A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. (2006). https://doi.org/10.1016/j.agwat.2005.03.007

    Article  Google Scholar 

  29. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.: Chapter 4 - Determination of ETo. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/x0490e/x0490e08.htm (2021). Accessed 22 Aug 2021

  30. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.: Chapter 6 - ETc - Single crop coefficient (Kc). Food and Agriculture Organization of the United Nations. http://www.fao.org/3/x0490e/x0490e0b.htm (2021). Accessed 22 Aug 2021

  31. Monteith, J.L.: Evaporation and Environment. Symposia of the Society for Experimental Biology, p. 205–234. Cambridge University Press, Cambridge (1965)

    Google Scholar 

  32. Savva, A.P.; Frenken, K.: Crop Water Requirements and Irrigation Scheduling. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/ai593e/ai593e.pdf (2021). Accessed 22 Aug 2021

  33. Adem, K.; Kiliçarslan, S.; Cömert, O.: Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification. Expert Syst. Appl. 115, 557–564 (2019). https://doi.org/10.1016/j.eswa.2018.08.050

    Article  Google Scholar 

  34. Mohammadi, L.; Baniasadi, M.; Rahdar, A.; Kyzas, G.Z.: Removal of acid dye from aqueous solutions with adsorption onto modified wheat bran: modeling with artificial neural networks. Biointerface Res. Appl. Chem. 11, 14044–14056 (2021). https://doi.org/10.33263/BRIAC116.1404414056

    Article  Google Scholar 

  35. Murty, K.G.: Optimization models for decision making: volume 1. Dept. Ind. Oper. Eng. (2003). https://doi.org/10.1039/C2CP90106D

    Article  Google Scholar 

  36. Jaiswal, V.; Sharma, V.; Varma, S.: An implementation of novel genetic based clustering algorithm for color image segmentation. Telecommun. Comput. Electron. Control. (2019). https://doi.org/10.12928/TELKOMNIKA.v17i3.10072

    Article  Google Scholar 

  37. Karaboga, D.: Artificial Intelligence Optimization Algorithms. Atlas Release Publication. (2004)

  38. Yao, W.; Ma, X.; Chen, Y.: Optimization of Canal water in an irrigation network based on a genetic algorithm: a case study of the north china plain canal system. Irrig. Drain. (2019). https://doi.org/10.1002/ird.2345

    Article  Google Scholar 

  39. Stephan, P.; Stephan, T.; Kannan, R.; Abraham, A.: A hybrid artificial bee colony with whale optimization algorithm for improved breast cancer diagnosis. Neural Comput. Appl. (2021). https://doi.org/10.1007/s00521-021-05997-6

    Article  Google Scholar 

  40. Wahyuni, I.; Mahmudy, W.F.: Rainfall prediction in Tengger, Indonesia using hybrid tsukamoto FIS and genetic algorithm method. J. ICT Res. Appl. 11, 38–55 (2017). https://doi.org/10.5614/itbj.ict.res.appl.2017.11.1.3

    Article  Google Scholar 

  41. Lopes, J.; Gonçalves, A.; Carvalho, J.; Fujimoto, R.: Fish disease diagnosis using artificial neural networks. Int. J. Comput. Sci. Issues. 8(6), 68–74 (2011)

    Google Scholar 

  42. Şimşir, M.; Bayir, R.; Uyaroʇlu, Y.: Real-time monitoring and fault diagnosis of a low power hub motor using feedforward neural network. Comput. Intell. Neurosci. (2016). https://doi.org/10.1155/2016/7129376

    Article  Google Scholar 

  43. Lahiri, S.K.; Ghanta, K.C.: Development of an artificial neural network correlation for prediction of hold-up of slurry transport in pipelines. Chem. Eng. Sci. 63, 1497–1509 (2008). https://doi.org/10.1016/j.ces.2007.11.030

    Article  Google Scholar 

  44. Sun, Y.; Zhang, J.; Li, G.; Wang, Y.; Sun, J.; Jiang, C.: Optimized neural network using beetle antennae search for predicting the unconfined compressive strength of jet grouting coalcretes. Int. J. Numer. Anal. Methods Geomech. 43, 801–813 (2019). https://doi.org/10.1002/nag.2891

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Akif Bülbül.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bülbül, M.A., Öztürk, C. Optimization, Modeling and Implementation of Plant Water Consumption Control Using Genetic Algorithm and Artificial Neural Network in a Hybrid Structure. Arab J Sci Eng 47, 2329–2343 (2022). https://doi.org/10.1007/s13369-021-06168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06168-4

Keywords

Navigation