Skip to main content
Log in

Maneuvering Target Tracking using T-S Fuzzy Model of Physical Membership Function

  • Research Article-Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A T-S fuzzy model identification method based on physical membership function is proposed for maneuvering target tracking. T-S fuzzy model is a good tool for fitting complex and nonlinear systems conducted by separating inputs–outputs spaces of systems and identifying corresponding parameters. Usually membership degrees play important roles in fusing local fuzzy models for reflecting nonlinear property of T-S fuzzy model, however, usual membership degrees are obtained by Gaussian function, which not only lacks interpretability and meanings but also is complex to be used. In this paper, a physical membership function with interpretability and physical meanings is proposed. To identify T-S fuzzy model based on the proposed method, first, a hyper-planed FSC algorithm as the separating method is utilized. Then UKF is used to identify consequent parameters. Finally, the proposed physical membership function is used to fuse local models and estimate final states. We apply the proposed T-S fuzzy model algorithms to maneuvering target tracking, and comparisons with several classical methods on both simulated data and real data demonstrate effectiveness and advantages of the proposed methods in tracking accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  2. Uhlmann, J.K.; Julier, S.J.: A new extension of the kalman filter to nonlinear systems, Signal Processing, Sensor Fusion, and Target Recognition VI. International Society for Optics and Photonics 3068, 182–193 (1997)

    Google Scholar 

  3. Julier, S.; Uhlmann, J.; Durrantwhyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)

    Article  MathSciNet  Google Scholar 

  4. Arulampalam, M.; Maskell, S.; Gordon, N., et al.: A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  5. Liu, J.; Wang, Z.; Xu, M.: DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network. Information Fusion 53, 289–304 (2020)

    Article  Google Scholar 

  6. Zhang, B.; Li, Z.; Perina, A., et al.: Adaptive local movement modeling for robust object tracking. IEEE Trans. Circuits Syst. Video Technol. 27(7), 1515–1526 (2017)

    Article  Google Scholar 

  7. Chu, Z.; Zhu, D.; Yang, S.X.: Observer-based adaptive neural network trajectory tracking control for remotely operated vehicle. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1633 (2017)

    Article  MathSciNet  Google Scholar 

  8. Blom, H.A.; Bar-Shalom, Y.: The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE Trans. Autom. Control 33(8), 780–783 (1988)

    Article  Google Scholar 

  9. Khalid, S.; Abrar, S.: A low-complexity interacting multiple model filter for maneuvering target tracking. AEUE-Int. J. Electron. Commun. 73, 157–164 (2017)

    Article  Google Scholar 

  10. Jing, L.; Vadakkepat, P.: Interacting MCMC particle filter for tracking maneuvering target. Digital Signal Processing 20, 561–574 (2010)

    Article  Google Scholar 

  11. You, P.; Ding, Z.; Qian, L., et al.: A Motion Parameter Estimation Method for Radar Maneuvering Target in Gaussian Clutter. IEEE Trans. Signal Process. 67(99), 5433–5446 (2019)

    Article  MathSciNet  Google Scholar 

  12. Jin, B.; Guo, J.; Su, B., et al.: Adaptive waveform selection for maneuvering target tracking in cognitive radar. Digital Signal Processing 75, 210–221 (2018)

    Article  MathSciNet  Google Scholar 

  13. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  14. Li, R.; Guo, Y.; Nguang, S.K., et al.: Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability. Chin. J. Aeronaut. 31(6), 1206–1214 (2018)

    Article  Google Scholar 

  15. S. K. Choy, T. C. Ng, and C. Yu, Unsupervised Fuzzy Model-based Image Segmentation, Signal Processing 171 (2020) 107483.

  16. E. Ahmadi, J. Zarei, R. Razavi-Far and et al., A Dual Approach for Positive T-S Fuzzy Controller Design and Its Application to Cancer Treatment Under Immunotherapy and Chemotherapy, Biomedical Signal Processing and Control 58 (2019) 101822.

  17. Zhang, J.; He, Z.M.; Wang, X.G., et al.: TSK Fuzzy Approach to Channel Estimation for MIMO-OFDM Systems. IEEE Signal Process. Lett. 14(6), 381–384 (2007)

    Article  Google Scholar 

  18. Li, L.; Wang, X.; Xie, W., et al.: A novel recursive T-S fuzzy semantic modeling approach for discrete state-space systems. Neurocomputing 340(7), 222–232 (2019)

    Article  Google Scholar 

  19. Li, L.; Sun, Y.; Liu, Z.: Maximum Fuzzy Correntropy Kalman Filter and Its Application to Bearings-Only Maneuvering Target Tracking. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-020-00956-0

    Article  Google Scholar 

  20. Amirzadeh, A.; Karimpour, A.: An interacting Fuzzy-Fading-Memory-based Augmented Kalman Filtering method for maneuvering target tracking. Digital Signal Processing 23, 1678–1685 (2013)

    Article  Google Scholar 

  21. X. Wang, W. Xie, and L. Li, Interacting T-S fuzzy particle filter algorithm for transfer probability matrix of adaptive online estimation model, Digital Signal Processing 110 (2021) 102944.

  22. Takagi, K.: Tomohiro, and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, Readings in Fuzzy Sets for Intelligent Systems 15(1), 387–403 (1993)

    Google Scholar 

  23. C. Li, Z. Wen, Z. Nan and et al., An evolving T–S fuzzy model identification approach based on a special membership function and its application on pump-turbine governing system, Engineering Applications of Artificial Intelligence 69.MAR. (2018) 93–103.

  24. Li, C.; Zhou, J.; Li, Q., et al.: A new T-S fuzzy-modeling approach to identify a boiler–turbine system. Expert Syst. Appl. 37(3), 2214–2221 (2010)

    Article  Google Scholar 

  25. Li, C.; Zhou, J.; Xiang, X., et al.: T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm. Eng. Appl. Artif. Intell. 22(4–5), 646–653 (2009)

    Article  Google Scholar 

  26. Li, C.; Zhou, J.; Fu, B., et al.: T-S fuzzy model identification with a gravitational search-based hyper-plane clustering algorithm. IEEE Trans. Fuzzy Syst. 20(2), 305–317 (2012)

    Article  Google Scholar 

  27. Kim, E.; Park, M.; Ji, S., et al.: A new approach to fuzzy modeling. IEEE Trans. Fuzzy Syst. 5(3), 328–337 (1997)

    Article  Google Scholar 

  28. Z. Deng, K. Choi, Y. Jiang and et al., A survey on soft subspace clustering, Information Sciences 348.C (2016) 84–106.

  29. X. Jia, X. Chi, and Q. L. Han, A membership function deviation approach to network-based H∞ fuzzy output feedback control for Takagi-Sugeno fuzzy systems, IEEE (2011) 2288–2293. DOI:https://doi.org/10.1109/IECON.2011.6119666

  30. Gan, G.; Wu, J.: A convergence theorem for the fuzzy subspace clustering (FSC) algorithm. Pattern Recogn. 41(6), 1939–1947 (2008)

    Article  Google Scholar 

  31. Wen, Z.; Li, C.; Zhang, N.: A T-S Fuzzy Model Identification Approach Based on a Modified Inter Type-2 FRCM Algorithm. IEEE Trans. Fuzzy Syst. 26(3), 1104–1113 (2018)

    Article  Google Scholar 

  32. Julier, S.J.; Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004). https://doi.org/10.1109/JPROC.2003.823141

    Article  Google Scholar 

  33. Chang, L.; Hu, B.; Li, K.: Iterated multiplicative extended kalman filter for attitude estimation using vector observations. IEEE Trans. Aerosp. Electron. Syst. 52(4), 2053–2060 (2016). https://doi.org/10.1109/TAES.2016.150237

    Article  Google Scholar 

  34. W. Guo, C. Han, and M. Lei, Improved Unscented Particle Filter For Nonlinear Bayesian Estimation, 2007 10th International Conference on Information Fusion, Quebec, Que., 2007, pp. 1–6, doi: https://doi.org/10.1109/ICIF.2007.4407986.

  35. Jing, L.; Vadakkepat, P.: Interacting MCMC particle filter for tracking maneuvering target Digit. Signal Process. 20(2), 561–574 (2010)

    Google Scholar 

  36. Li, L.; Xie, W.; Huang, J., et al.: Multiple model rao–black-wellized particle filter for maneuvering target tracking. Int. J. Def. Sci. 59(3), 197–204 (2009)

    Article  Google Scholar 

  37. Li, X.R.; Bar-Shalom, Y.: Multiple-model estimation with variable structure. IEEE Trans. Autom. Control 41(4), 478–493 (1996)

    Article  MathSciNet  Google Scholar 

  38. X.R. Li, V.P. Jilkov, Survey of maneuvering target tracking. part v. multiple-model methods, IEEE Trans. Aerosp. Electron. Syst. 41 (4) (2005) 1255–1321.

  39. Wang, L.: Universal approximation by hierarchical fuzzy systems. Fuzzy Sets Syst. 93(2), 223–230 (1998)

    Article  MathSciNet  Google Scholar 

  40. Li, L.; Zhan, X.; Liu, Z., et al.: Fuzzy logic approach to visual multi-object tracking. Neurocomputing 281(3), 139–151 (2018)

    Google Scholar 

Download references

Acknowledgements

We sincerely thank editor-in-chief, assigned deputy editor and anonymous reviewers for their efforts and suggestions on our work. This work was supported by the National Natural Science Foundation of China (Grant No. 62171287 and 61773267), Science and Technology Program of Shenzhen (Grant No. JCYJ20170302145519524, JCYJ20170818102503604 and JCYJ20190808120417257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangqun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Li, L. Maneuvering Target Tracking using T-S Fuzzy Model of Physical Membership Function. Arab J Sci Eng 47, 3889–3898 (2022). https://doi.org/10.1007/s13369-021-06139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06139-9

Keywords

Navigation