Skip to main content

Advertisement

Log in

Virtual Inertia Emulation of Inverter Interfaced Distributed Generation (IIDG) for Dynamic Frequency Stability & Damping Enhancement Through BFOA Tuned Optimal Controller

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Dynamic frequency stability concerns are engendered in the modern electric power system due to the large penetration of low inertia inverter interfaced distributed generation (IIDG) into the utility grid. Therefore, inertial support is needed similar to the conventional synchronous generator. From recent studies, it was observed that frequency stability is considered as one of the major challenges for the system operators and is required to be alleviated. In this methodology, the virtual inertia (VI) concept is suggested as a promising solution to boost the inertial response of IIDG. Full state feedback through a robust linear quadratic regulator (LQR) is employed to find optimal inertia and damping coefficients to emulate VI in IIDG. These coefficients are used to evaluate the additional power required to provide inertia emulation by a virtual synchronous generator (VSG). To upgrade the performance index in LQR, a bacterial foraging optimization algorithm (BFOA) is suggested for optimal parameters (weights) selection in the problem search space. The proposed optimal controller ameliorates VI dynamics and brings system frequency faster to the nominal value and allows more penetration of IIDGs. Time-domain simulated results and observed test system eigenvalues corroborate the effectiveness of a proposed controller. Time-domain simulations have been obtained using MATLAB/Sim Power Systems toolbox, and the LINMOD function in MATLAB is used to linearize the suggested system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

IIDG:

Inverter interfaced distributed generation

VI:

Virtual inertia

LQR:

Linear quadratic regulator

VSG:

Virtual synchronous generator

BFOA:

Bacteria foraging optimization algorithm

SG:

Synchronous generator

SM:

Synchronous machine

PMSG:

Permanent magnet SG

DFIG:

Doubly fed induction generator

ESS:

Energy storage system

RoCoF:

Rate of change of frequency

ETAP:

Electrical transient analyzer program

K.E:

Kinetic energy

C.P:

Constant parameter

PI:

Performance index

PLL:

Phase-locked loop

SRF:

Synchronous rotating frame

VSI:

Voltage source inverter

CC:

Current control

RAE:

Riccati algebraic equation

i L :

Inverter output current

v g :

Grid voltage

u s :

Inverter output voltage

iLd , iLq :

Inverter current in d-q frame of reference

i* Ld , i* Lq :

Reference currents

P m :

Mechanical input power

P e :

Electrical output power

f :

Measured frequency

fnom :

Nominal frequency

H e :

Equivalent inertia

J :

Moment of inertia

S b :

Base MVA

H SG :

SG inertia

SSG :

SG maximum capacity

W SG :

SG stored K.E

W KE :

Emulated K. E

H IIDG :

IIDG equivalent inertia

V DC :

DC link voltage

S IIDG :

IIDG rated capacity

ΔP IIDG :

Additional emulated active power

M :

Virtual inertia coefficient

D :

Virtual damping coefficient

Q :

Performance weight function

R :

Actuator weight function

ΔE :

Change in K.E

ΔV DC :

Change in dc link voltage

K p , K i :

Proportional and integral gain

J PI :

Cost function

ΔP L :

Sudden load change

pu :

Per unit

ω :

Measured angular frequency

References

  1. Poolla, B.K.; Grob, D.; Dorfler, F.: Placement and implementation of grid-forming and grid-following virtual inertia and fast frequency response. IEEE Trans. Power Syst. 34(4), 3035–3046 (2019)

    Article  Google Scholar 

  2. Bonfiglio, A.; Invernizzi, M.; Labella, A.; Procopio, R.: Design and implementation of a variable synthetic inertia controller for wind turbine generators. IEEE Trans. Power Syst. 34(1), 754–764 (2019)

    Article  Google Scholar 

  3. Zhong, Q.; Weiss, G.: Synchronverters: Inverters That Mimic Synchronous Generators. IEEE Trans. Industr. Electron. 58(4), 1259–1267 (2011)

    Article  Google Scholar 

  4. Mullane, A.; O’Malley, M.: The inertial response of induction machine-based wind turbines. IEEE Trans. power syst. 20(3), 1496–1503 (2005)

    Article  Google Scholar 

  5. Lalor, G.; Mullane, A.; O’Malley, M.: Frequency control and wind turbine technologies. IEEE Trans. Power Syst. 20(4), 1905–1913 (2005)

    Article  Google Scholar 

  6. Keung, P.-K.; Li, P.; Banakar, H.; Ooi, B.T.: Kinetic energy of wind turbine generators for system frequency support. IEEE Trans. Power Syst. 24(1), 279–287 (2009)

    Article  Google Scholar 

  7. Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodriguez, P.: Control of power converters in ac microgrids. IEEE Trans. Power Electron. 27(11), 4734–4749 (2012)

    Article  Google Scholar 

  8. Alipoor, J.; Miura, Y.; Ise, T.: “Power system stabilization using a virtual synchronous generator with alternating moments of inertia”, IEEE. J. Emerg. Sel. Topics Power Electron. 3(2), 451–458 (2015)

    Article  Google Scholar 

  9. Ravanji, M.H.; Parniani, M.: Modified virtual inertial controller for prudential participation of DFIG-based wind turbines in power system frequency regulation. IET Renewable Power Gener. 13(1), 155–164 (2017)

    Article  Google Scholar 

  10. Kang, M.; Kim, K.; Muljadi, E.; Park, J.; Kang, Y.C.: Frequency control support of a doubly-fed induction generator based on the torque limit. IEEE Trans. Power Syst. 31(6), 4575–4583 (2016)

    Article  Google Scholar 

  11. Jinsik, L.; Jang, G.; Muljadi, E.; Blaabjerg, F.; Chen, Z.; Cheol Kang, Y.: Stable short-term frequency support using adaptive gains for a DFIG based wind power plant. IEEE Trans. Energy Convers. 31(3), 6289–6297 (2016)

    Google Scholar 

  12. Laijun, C.; Ren, W.; Tianwen, Z.: Optimal control of transient response of virtual synchronous generator based on parameter adaptive regulation. Proc. CSEE 36(21), 5724–5731 (2016)

    Google Scholar 

  13. Alipoor, J.; Miura, Y.; and Ise T.: “Distributed generation grid integration using virtual synchronous generator with adoptive virtual inertia,” In: Proc. IEEE Energy Convers. Congr. Expo., Denver, CO, USA, 2013, pp. 4546–4552.

  14. L. F. Ochoa and G. P. Harrison, “Minimizing energy losses: Optimal accommodation and smart operation of renewable distributed generation,” In: Proc. IEEE Power Energy Soc. General Meeting, San Diego, CA, USA, 2011, pp. 24–29.

  15. Wang, F.; Zhang, L.; Feng, X.; Guo, H.: An adaptive control strategy for virtual synchronous generator. IEEE Trans. Ind. Appl. 54(5), 5124–5133 (2018)

    Article  Google Scholar 

  16. Markovic, U.; Chu, Z.; Aristidou, P.; Hug-Glanzmann, G.: Lqr-based adaptive virtual synchronous machine for power systems with high inverter penetration. IEEE Trans. Sust. Energy 10(3), 1501–1512 (2018)

    Article  Google Scholar 

  17. Li, D.; Zhu, Q.; Lin, S.; Bian, X.: A self-adaptive inertia and damping combination control of VSG to support frequency stability. IEEE Trans. Energy Convers. 32(1), 397–398 (2017)

    Article  Google Scholar 

  18. Torres, M.A.; Lopes, L.A.C.; Moran, L.A.; Espinoza, J.R.: Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control. IEEE Trans Energy Convers 29(4), 833–840 (2014)

    Article  Google Scholar 

  19. Zhang, S.; Mishra, Y.; Shahidehpour, M.: Fuzzy-logic based frequency controller for wind farms augmented with energy storage systems. IEEE Trans. Power Syst. 31(2), 1595–1603 (2015)

    Article  Google Scholar 

  20. Li, M.; Huang, W.; Tai, N.; Yang, L.; Duan, D.; Ma, Z.: A dual-adaptivity inertia control strategy for virtual synchronous generator. IEEE Trans. On Power syst. 35(1), 594–604 (2020)

    Article  Google Scholar 

  21. Khazaei J.; Tu Z.; Liu W.: Small-Signal Modeling and Analysis of Virtual Inertia-based PV Systems. In: IEEE Transactions on Energy Conversion

  22. Moreno, V.M.; Liserre, M.; Pigazo, A.; Aquila, A.: A compararative analysis of real-time algorithm for power signal decomposition in multiple synchronous reference frame. IEEE Trans. Power Electron. 22(4), 1280–1289 (2007)

    Article  Google Scholar 

  23. Kazmierkowski, M.; Krishnan, R.; Blaabjerg, F.: Control in Power Electronics—Selected Problems. Academic Press (2002)

    Google Scholar 

  24. Abdul-Ghaffar, H.I.; Ebrahim, E.A.; Azzam, M.: Design of PID controller for power system stabilization using hybrid particle swarm-bacteria foraging optimization. WSEAS Trans. Power Syst. 8(1), 12–23 (2013)

    Google Scholar 

  25. Kumar, R., Singh, R., Ashfaq, H.: Stability enhancement of induction generator–based series compensated wind power plants by alleviating sub-synchronous torsional oscillations using BFOA-optimal controller tuned STATCOM. Wind Energy. 23(9), 1846–1867 (2020)

    Article  Google Scholar 

  26. Kumar R.; Singh R.; Ashfaq H.; Singh S.; Badoni M. “Power system stability enhancement by damping and control of Sub-synchronous torsional oscillations using Whale optimization algorithm-based Type-2 wind turbines,” ISA Transactions, 2020.

  27. Zhu, J.; Booth, C.D.; Adam, G.P.; Roscoe, A.J.; Bright, C.G.: Inertia emulation control strategy for VSC-HVDC transmission systems. IEEE Trans. Power Syst. 28(2), 1277–1287 (2013)

    Article  Google Scholar 

  28. C. Klumpner; M. Liserre and F. Blaabjerg, "Improved control of an active-front-end adjustable speed drive with a small de-link capacitor under real grid conditions," In: 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004.

  29. Kumar, R.; Singh, R.; Ashfaq, H.: Stability enhancement of multi-machine power systems using Ant colony optimization-based static Synchronous Compensator. Comp. Electr Eng. 83, 106589 (2020)

    Article  Google Scholar 

  30. Kumar, R.; Singh, R.; Ashfaq, H.: A Nature-Inspired Metaheuristic Swarm Based Optimization Technique BFOA Based Optimal Controller for Damping of SSR. Intelligent Computing Techniques for Smart Energy Systems. Lecture Notes in Electrical Engineering, Vol. 607, p. 631–639. Springer, Singapore (2020)

    Google Scholar 

  31. Kumar, R.; Diwania, S.; Singh, R.; Ashfaq, H.; Khetrapal, P.; Singh, S.: An intelligent Hybrid Wind–PV farm as a static compensator for overall stability and control of multimachine power system. ISA Trans. (2021). https://doi.org/10.1016/j.isatra.2021.05.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudhir Kumar Singh or Rajeev Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Singh, R., Ashfaq, H. et al. Virtual Inertia Emulation of Inverter Interfaced Distributed Generation (IIDG) for Dynamic Frequency Stability & Damping Enhancement Through BFOA Tuned Optimal Controller. Arab J Sci Eng 47, 3293–3310 (2022). https://doi.org/10.1007/s13369-021-06121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06121-5

Keywords

Navigation