Skip to main content
Log in

Optimization of 2-Chlorophenol Removal Using Ultrasound/Persulfate: Prediction by RSM Method, Biodegradability Improvement of Petrochemical Refinery Wastewater

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Chlorophenol compounds have the potential to cause significant environmental and health effects. In this research, response surface methodology (RSM) was utilized to find out the optimum condition for the oxidation of 2-chlorophenol using ultrasound/persulfate treatment technique. Contact time, pH, 2-chlorophenol concentration, persulfate concentration, and ultrasound power are considered as independent variables. The optimization of factors found from the experimental data is conducted by analysis of variance (ANOVA). A quadratic polynomial model is suggested as the best model in terms of statistical significance for 2-chlorophenol removal efficiency prediction. Reaction time = 65 min, pH = 3, 2-chlorophenol concentration = 17 mg/L, persulfate concentration = 120 mg/L, and ultrasound power = 150 W are found as optimum condition under which 2-chlorophenol reduction efficiency is found to be 90.92%. Determination of coefficient (R2) parameter was 0.93. The results demonstrated that the pH (A), reaction time (B), initial 2-chlorophenol concentration (C), persulfate concentration (D), ultrasound power (E), square terms of pH (A2), reaction time (B2), initial 2-chlorophenol concentration (C2), persulfate concentration (D2), ultrasound power (E2), and interaction terms of AB, AC, AD, BD, CD, AE, and DE were found as effective factors. The findings of the biodegradability variation of petrochemical refinery wastewater under ultrasound/persulfate treatment showed a remarkable increase in BOD5/COD ratio (0.14–0.57). It reveals that the process can be employed as a pretreatment step before biological processes to facilitate the biological treatment of the recalcitrant wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Darvishmotevalli, M.; Salari, M.; Moradnia, M.; Heydari, M.; Kiani, G.; Fadaei, S., et al.: Evaluation of magnetic ZSM-5 composite performance in 2, 4 dichlorophenol removal from synthetic solutions: response surface method (RSM) modeling and isotherm, kinetic and thermodynamic studies. Desalin. Water Treat. 164, 249–262 (2019)

    Article  Google Scholar 

  2. Qasemi, M.; Afsharnia, M.; Zarei, A.; Najafpoor, A.A.; Salari, S.; Shams, M.: Phenol removal from aqueous solution using Citrullus colocynthis waste ash. Data Brief 18, 620–628 (2018)

    Article  Google Scholar 

  3. Darvishmotevalli, M.; Moradnia, M.; Noorisepehr, M.; Fatehizadeh, A.; Fadaei, S.; Mohammadi, H.; Salari, M.; Jamali, H.A.; DanialiS, S.H.: Evaluation of carcinogenic risks related to nitrate exposure in drinking water in Iran. Methods 6, 1716–1727 (2019)

    Google Scholar 

  4. Duan, W.; Meng, F.; Cui, H.; Lin, Y.; Wang, G.; Wu, J.: Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicol. Environ. Saf. 157, 441–456 (2018)

    Article  Google Scholar 

  5. Fazelian, M.; Ramavandi, B.: Performance of activated carbon prepared from populus alba in removal of phenol from aqueous solution. J. Mazandaran Univ. Med. Sci. 24(121), 250–263 (2015)

    Google Scholar 

  6. DarvishMotevalli, M.;  Naghan, D.J.; Mirzaei, N.; Haghighi, S.A.; Hosseini, Z.; Sharafi, H.; Sharaf.:The reusing feasibility of wastewater treatment plant (conventional activated sludge) effluent of tomato paste factory for agricultural irrigation-a case study. Int. J. Pharm. Technol. 7(3), 9672–9679 (2015) 

    Google Scholar 

  7. Emamjomeh, M.M.; Jamali, H.A.; Moradnia, M.; Mousavi, S.; Karimi, Z.: Sanitary wastewater treatment using combined anaerobic and phytoremediation systems. J. Mazandaran Univ. Med. Sci. 26(138), 140–150 (2016)

    Google Scholar 

  8. Moradnia, M.; Emamjomeh, M.M.: An environmental-friendly study on sanitary wastewater treatment for small community. Desalin. Water Treat. 94, 25–30 (2017)

    Article  Google Scholar 

  9. Moradnia, M., et al.: The relation of cancer risk with nitrate exposure in drinking water in Iran. Iran. J. Public Health. 48(2), 362–364 (2019)

    Google Scholar 

  10. Dehghani, M.H.; Kamalian, S.; Shayeghi, M.; Yousefi, M.; Heidarinejad, Z.; Agarwal, S., et al.: High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchem. J. 145, 486–491 (2019)

    Article  Google Scholar 

  11. Dehghani, M.H.; Tajik, S.; Panahi, A.; Khezri, M.; Zarei, A.; Heidarinejad, Z., et al.: Adsorptive removal of noxious cadmium from aqueous solutions using poly urea-formaldehyde: a novel polymer adsorbent. MethodsX 5, 1148–1155 (2018)

    Article  Google Scholar 

  12. Dehghani, M.H.; Zarei, A.; Mesdaghinia, A.; Nabizadeh, R.; Alimohammadi, M.; Afsharnia, M., et al.: Production and application of a treated bentonite–chitosan composite for the efficient removal of humic acid from aqueous solution. Chem. Eng. Res. Des. 140, 102–115 (2018)

    Article  Google Scholar 

  13. Darvishmotevalli, M.; Moradnia, M.; Asgari, A.; Noorisepehr, M.; Mohammadi, H.: Reduction of pathogenic microorganisms in an Imhoff tank–constructed wetland system. Desalin. Water Treat. 154, 283–288 (2019)

    Article  Google Scholar 

  14. Rahmani, A.; Seid-Mohammadi, A.; Leili, M.; Shabanloo, A.; Ansari, A.; Alizadeh, S., et al.: Electrocatalytic degradation of diuron herbicide using three-dimensional carbon felt/β-PbO2 anode as a highly porous electrode: influencing factors and degradation mechanisms. Chemosphere 276, 130141 (2021)

    Article  Google Scholar 

  15. Samarghandi, M.R.; Dargahi, A.; Rahmani, A.; Shabanloo, A.; Ansari, A.; Nematollahi, D.: Application of a fluidized three-dimensional electrochemical reactor with Ti/SnO2–Sb/β-PbO2 anode and granular activated carbon particles for degradation and mineralization of 2, 4-dichlorophenol: process optimization and degradation pathway. Chemosphere 279, 130640 (2021)

    Article  Google Scholar 

  16. Sepehr, M.N.; Allani, F.; Zarrabi, M.; Darvishmotevalli, M.; Vasseghian, Y.; Fadaei, S., et al.: Dataset for adsorptive removal of tetracycline (TC) from aqueous solution via natural light weight expanded clay aggregate (LECA) and LECA coated with manganese oxide nanoparticles in the presence of H2O2. Data Brief 22, 676–686 (2019)

    Article  Google Scholar 

  17. Petrovic, M.; Radjenovic, J.; Barcelo, D.: Advanced oxidation processes (AOPs) applied for wastewater and drinking water treatment. Elimination of pharmaceuticals. The Holist. Approach Environ. 1(2), 63–74 (2011)

    Google Scholar 

  18. Shokoohi R, Salari M, Shabanloo A, Shabanloo N, Marofi S, Faraji H, et al.: Catalytic activation of persulphate with Mn3O4 nanoparticles for degradation of acid blue 113: process optimisation and degradation pathway. Int. J. Environ. Anal. Chem. 1–20 (2020)

  19. Rahmani, A.; Salari, M.; Tari, K.; Shabanloo, A.; Shabanloo, N.; Bajalan, S.: Enhanced degradation of furfural by heat-activated persulfate/nZVI-rGO oxidation system: degradation pathway and improving the biodegradability of oil refinery wastewater. J. Environ. Chem. Eng. 8(6), 104468 (2020)

    Article  Google Scholar 

  20. Rahmani, A.R.; Salari, M.; Shabanloo, A.; Shabanloo, N.; Bajalan, S.: Vaziri Y:Sono-catalytic activation of persulfate by nZVI-reduced graphene oxide for degradation of nonylphenol in aqueous solution: process optimization, synergistic effect and degradation pathway. J. Environ. Chem. Eng. 8(5), 104202 (2020)

    Article  Google Scholar 

  21. Samarghandi, M.R.; Tari, K.; Shabanloo, A.; Salari, M.; Nasab, H.Z.: Synergistic degradation of acid blue 113 dye in a thermally activated persulfate (TAP)/ZnO-GAC oxidation system: degradation pathway and application for real textile wastewater. Sep. Purif. Technol. 247, 116931 (2020)

    Article  Google Scholar 

  22. Mohammadi, M.; As’habi MA, Salehi P, Yousefi M, Nazari M, Brask J, : Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds. Int. J. Biol. Macromol. 109, 443–447 (2018)

    Article  Google Scholar 

  23. Omo-Okoro, P.N.; Daso, A.P.; Okonkwo, J.O.: A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies. Environ. Technol. Innov. 9, 100–114 (2018)

    Article  Google Scholar 

  24. Fan, Y.; Ji, Y.; Kong, D.; Lu, J.; Zhou, Q.: Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J. Hazard. Mater. 300, 39–47 (2015)

    Article  Google Scholar 

  25. Razmi, R.; Ramavandi, B.; Ardjmand, M.; Heydarinasab, A.: Efficient phenol removal from petrochemical wastewater using biochar-La/ultrasonic/persulphate system: characteristics, reusability, and kinetic study. Environ. Technol. 40(7), 822–834 (2019)

    Article  Google Scholar 

  26. Mohammadi, H.; Alinejad, A.; Khajeh, M.; Darvishmotevalli, M.; Moradnia, M.; Tehrani, A.M., et al.: Optimization of the 3D electro-Fenton process in removal of acid orange 10 from aqueous solutions by response surface methodology. J. Chem. Technol. Biotechnol. 94(10), 3158–3171 (2019)

    Article  Google Scholar 

  27. Darvishmotevalli, M.; Zarei, A.; Moradnia, M.; Noorisepehr, M.; Mohammadi, H.: Optimization of saline wastewater treatment using electrochemical oxidation process: prediction by RSM method. MethodsX. 6, 1101–1113 (2019)

    Article  Google Scholar 

  28. Dehghani, M.H.; Karri, R.R.; Yeganeh, Z.T.; Mahvi, A.H.; Nourmoradi, H.; Salari, M., et al.: Statistical modelling of endocrine disrupting compounds adsorption onto activated carbon prepared from wood using CCD-RSM and DE hybrid evolutionary optimization framework: comparison of linear vs non-linear isotherm and kinetic parameters. J. Mol. Liq. 302, 112526 (2020)

    Article  Google Scholar 

  29. Dehghani, M.H.; Yetilmezsoy, K.; Salari, M.; Heidarinejad, Z.; Yousefi, M.; Sillanpää, M.: Adsorptive removal of cobalt (II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: modelling and optimization based on response surface methodology and artificial neural network. J. Mol. Liq. 299, 112154 (2020)

    Article  Google Scholar 

  30. Emamjomeh, M.M.; Jamali, H.A.; Moradnia, M.: Optimization of nitrate removal efficiency and energy consumption using a batch monopolar electrocoagulation: prediction by RSM method. J. Environ. Eng. 143(7), 04017022 (2017)

    Article  Google Scholar 

  31. Fadaei, S.; Noorisepehr, M.; Pourzamani, H.R.; Salari, M.; Moradnia, M.; Darvishmotevalli, M.; Mengelizade, N.; Darvishmotevalli, M.: Heterogeneous activation of peroxymonosulfate with Fe3O4 magnetic nanoparticles for degradation of Reactive Black 5: Batch and column study. J. Environ. Chem. Eng. 9(4), 105414 (2021)

    Article  Google Scholar 

  32. Razmi, R.; Ardjmand, M.; Ramavandi, B.; Heydarinasab, A.: Optimization of phenol removal from wastewater by activation of persulfate and ultrasonic waves in the presence of biochar catalyst modified by lanthanum chloride. Water Environ. J. 33(4), 499–507 (2019)

    Article  Google Scholar 

  33. Almasi, H.; Asgari, G.; Leili, M.; Sharifi, Z.; Seid-Mohammadi, A.: The study of phenol removal from aqueous solutions using oxidizing agents of peroxide hydrogen, persulfate and periodate activated by ultrasound. J. Rafsanjan Univ. Med. Sci. 15(9), 835–848 (2017)

    Google Scholar 

  34. Barzegar, G.; Jorfi, S.; Zarezade, V.; Khatebasreh, M.; Mehdipour, F.: Ghanbari F:4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: reusability, identification of degradation intermediates and potential application for real wastewater. Chemosphere 201, 370–379 (2018)

    Article  Google Scholar 

  35. Motevalli, M.; Naghan, D.; Mirzaei, N.; Haghighi, S.; Hosseini, Z.; Sharafi, H., et al.: The reusing feasibility of wastewater treatment plant (conventional activated sludge) effluent of tomato paste factory for agricultural irrigation-a case study. Int. J. Pharm. Technol. 7(3), 9672–9679 (2015)

    Google Scholar 

  36. Taherkhani, S.; Darvishmotevalli, M.; Karimyan, K.; Bina, B.; Fallahi, A.; Karimi, H.: Dataset on photodegradation of tetracycline antibiotic with zinc stannate nanoflower in aqueous solution–application of response surface methodology. Data Brief 19, 1997–2007 (2018)

    Article  Google Scholar 

  37. Asgaria, G.; Seidmohammadia, A.; Salaria, M.; Ramavandib, B.; Faradmalc, J.: Catalytic ozonation assisted by rGO/C-MgO in the degradation of humic acid from aqueous solution: modeling and optimization by response surface methodology, kinetic study. Desalin. Water Treat. 174, 215–229 (2020)

    Article  Google Scholar 

  38. Mazloomi, S.; Zarei, A.; Nourmoradi, H.; Ghodsei, S.; Amraei, P.; Haghighat, G.A.: Optimization of coagulation-flocculation process for turbidity removal using response surface methodology: a study in Ilam water treatment plant, Iran. Desalin. Water Treat. 147, 234–242 (2019)

    Article  Google Scholar 

  39. Dehghani, M.H.; Zarei, A.; Mesdaghinia, A.; Nabizadeh, R.; Alimohammadi, M.; Afsharnia, M.: Adsorption of Cr (VI) ions from aqueous systems using thermally sodium organo-bentonite biopolymer composite (TSOBC): response surface methodology, isotherm, kinetic and thermodynamic studies. Desalin. Water Treat. 85, 298–312 (2017)

    Article  Google Scholar 

  40. Dargahi, A., Samarghandi, M.R., Shabanloo, A., Mahmoudi, M.M., Nasab H.Z.: Statistical modeling of phenolic compounds adsorption onto low-cost adsorbent prepared from aloe vera leaves wastes using CCD-RSM optimization: effect of parameters, isotherm, and kinetic studies. Biomass Convers. Biorefinery. 1–15 (2021)

  41. Asgari, G., Seid-mohammadi, A., Rahmani, A., Samadi, M.T., Alizadeh, S., Nematollahi, D. et al.: Carbon felt modified with N-doped rGO for an efficient electro-peroxone process in diuron degradation and biodegradability improvement of wastewater from a pesticide manufacture: optimization of process parameters, electrical energy consumption and degradation pathway. Sep. Purif. Technol. 118962 (2021)

  42. Asgari, G.; Seid-Mohammadi, A.; Rahmani, A.; Samadi, M.T.; Salari, M.; Alizadeh, S., et al.: Diuron degradation using three-dimensional electro-peroxone (3D/E-peroxone) process in the presence of TiO2/GAC: application for real wastewater and optimization using RSM-CCD and ANN-GA approaches. Chemosphere 266, 129179 (2021)

    Article  Google Scholar 

  43. Cristóvão, R.O.; Gonçalves, C.; Botelho, C.M.; Martins, R.J.; Loureiro, J.M.; Boaventura, R.A.: Fish canning wastewater treatment by activated sludge: application of factorial design optimization: biological treatment by activated sludge of fish canning wastewater. Water Resour. Ind. 10, 29–38 (2015)

    Article  Google Scholar 

  44. Mansourian, N.; Javedan, G.; Darvishmotevalli, M.; Sharafi, K.; Ghaffari, H.; Sharafi, H., et al.: Efficiency evaluation of zeolite powder, as an adsorbent for the removal of nickel and chromium from aqueous solution: isotherm and kinetic study. Int. J. Pharm. Technol. 8(2), 13891–13907 (2016)

    Google Scholar 

  45. Bashir, M.J.; Aziz, H.A.; Yusoff, M.S.; Adlan, M.N.: Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination 254(1), 154–161 (2010)

    Article  Google Scholar 

  46. Movahedian Attar, H.; Darvishmotevalli, M.; Moradnia, M.: Degradation of 4-chlorophenol from aqueous solution using ultrasound/persulphate: prediction by RSM. Int. J. Environ. Anal. Chem. 1–11 (2020)

  47. Dehghani, M.H.; Salari, M.; Karri, R.R.; Hamidi, F.; Bahadori, R.: Process modeling of municipal solid waste compost ash for reactive red 198 dye adsorption from wastewater using data driven approaches. Sci. Rep. 11(1), 1–20 (2021)

    Article  Google Scholar 

  48. Dehghani, M.H.; Hassani, A.H.; Karri, R.R.; Younesi, B.; Shayeghi, M.; Salari, M., et al.: Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling. Sci. Rep. 11(1), 1–15 (2021)

    Article  Google Scholar 

  49. Mohammadi, H.; Alinejad, A.; Khajeh, M.; Darvishmotevalli, M.; Moradnia, M.; Mazaheri Tehrani, A.; Hosseindost, G.R.; Zare, M.R.; Mengelizadeh, N.: Optimization of the 3D electro-Fenton process in removal of acid orange 10 from aqueous solutions by response surface methodology. J. Chem. Technol. Biotechnol. 94(10), 3158–3171 (2019)

    Article  Google Scholar 

  50. Hou, L.; Zhang, H.; Xue, X.: Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water. Sep. Purif. Technol. 84, 147–152 (2012)

    Article  Google Scholar 

  51. SeidMohammadi, A.; Asgari, G.; Almasi, H.: Removal of 2, 4 di-chlorophenol using persulfate activated with ultrasound from aqueous solutions. J. Environ. Health Eng. 1(4), 259–270 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank authorities of Department of Environmental Health Engineering in Isfahan University of Medical Sciences, for their comprehensives support in this study. This study was approved by the Ethics Committee, Isfahan University of Medical Sciences (Code: IR.MUI.RESEARCH.REC.1398.031) and project number # 198112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Darvishmotevalli.

Ethics declarations

Conflict of interest

Authors have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradnia, M., Noorisepehr, M., Salari, M. et al. Optimization of 2-Chlorophenol Removal Using Ultrasound/Persulfate: Prediction by RSM Method, Biodegradability Improvement of Petrochemical Refinery Wastewater. Arab J Sci Eng 47, 6931–6939 (2022). https://doi.org/10.1007/s13369-021-06084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06084-7

Keywords

Navigation