Skip to main content
Log in

Adsorption of Nickel(II) Ions from Synthetic Wastewater Using Activated Carbon Prepared from Mespilus germanica Leaf

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Today one of the major environmental issues is the contamination of surface waters by toxic heavy metals. Such pollutants cannot be decomposed in environment and jeopardize human health. Therefore, the removal of these ions from water and wastewater has been considered as a worldwide concern. In this work, the activated carbon which was produced from Mespilus germanica leaf was used for the removal of Ni2+ ions from aqueous solution, and the effect of operating parameters, namely solution pH (3–10), the dosage of adsorbent (0.1–0.7 g/L), contact time (10–80 min), process temperature (298–348 K), and nickel ion initial concentration (10–70 ppm) were investigated on its adsorption percentage. Additionally, the prepared adsorbent was characterized by BET, SEM, XRD, FTIR, and EDAX techniques. Based on the results of BET analysis, the surface area of the adsorbent was 10.39 m2/g. The optimal nickel ions adsorption efficiency was 97.56% which was achieved in the following optimal operating conditions: pH = 7, adsorbent dosage = 0.4 g/L, contact time = 50 min, 298 K, and nickel ion initial concentration = 60 ppm. In addition, the equilibrium and kinetic investigations showed that Langmuir isotherm and the pseudo second-order kinetic models described the equilibrium behavior and kinetics of the current adsorption process well. Langmuir isotherm data showed that the maximum adsorption capacity was equal to 13.08 mg/g. Additionally, the thermodynamic study of the process indicated that Ni2+ ions adsorption by the produced activated carbon was exothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Volesky, B.: Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59, 203–216 (2001)

    Article  Google Scholar 

  2. Zahed, M.; Jafari, D.; Esfandyari, M.: Adsorption of formaldehyde from aqueous solution using activated carbon prepared from Hibiscus rosa-sinensis. Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1762872

    Article  Google Scholar 

  3. Borba, C.E.; Guirardello, R.; Silva, E.A.; Veit, M.T.; Tavares, C.R.G.: Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Biochem. Eng. J. 30, 184–191 (2006)

    Article  Google Scholar 

  4. Norouzi, H.; Jafari, D.; Esfandyari, M.: Study on a new adsorbent for biosorption of cadmium ion from aqueous solution by activated carbon prepared from Ricinus communis. Desalin. Water Treat. 191, 140–152 (2020)

    Article  Google Scholar 

  5. Eccles, H.: Removal of heavy metals from effluent streams—why select a biological process? Int. Biodeterior. Biodegrad. 35, 5–16 (1995)

    Article  Google Scholar 

  6. Habib, M.A.; Moghaddam, S.M.R.A.; Arami, M.; Hashemi, S.H.: Optimization of the electrocoagulation process for removal of Cr(VI) using Taguchi method. J. Water Wastewater 22–24, 2–8 (2012)

    Google Scholar 

  7. Leyva-Ramos, R.; Diaz-Flores, P.E.; Aragon-Piña, A.; Mendoza-Barron, J.; Guerrero-Coronado, R.M.: Adsorption of cadmium(II) from an aqueous solution onto activated carbon cloth. Sep. Sci. Technol. 40, 2079–2094 (2005)

    Article  Google Scholar 

  8. Ahmedna, M.; Marshall, W.E.; Husseiny, A.A.; Rao, R.M.; Goktepe, I.: The use of nutshell carbons in drinking water filters for removal of trace metals. Water Res. 38, 1062–1068 (2004)

    Article  Google Scholar 

  9. Bouhamed, F.; Elouear, Z.; Bouzid, J.; Ouddane, B.: Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environ. Sci. Pollut. Res. 23, 15801–15806 (2016)

    Article  Google Scholar 

  10. Nejadshafiee, V.; Islami, M.R.: Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater. Sci. Eng. C 101, 42–52 (2019)

    Article  Google Scholar 

  11. Aguayo-Villarreal, I.A.; Bonilla-Petriciolet, A.; Muñiz-Valencia, R.: Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. J. Mol. Liq. 230, 686–695 (2017)

    Article  Google Scholar 

  12. Yunus, Z.M.; Al-Gheethi, A.; Othman, N.; Hamdan, R.; Ruslan, N.N.: Removal of heavy metals from mining effluents in tile and electroplating industries using honeydew peel activated carbon: a microstructure and techno-economic analysis. J. Clean. Prod. 251, 119738 (2020)

    Article  Google Scholar 

  13. Aboli, E.; Jafari, D.; Esmaeili, H.: Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves. Carbon Lett. 30, 683–698 (2020)

    Article  Google Scholar 

  14. Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A.: Activated carbons produced by pyrolysis of waste potato peels: cobalt ions removal by adsorption. Colloids Surf. A Physicochem. Eng. Asp. 490, 74–83 (2016)

    Article  Google Scholar 

  15. Yao, S.; Zhang, J.; Shen, D.; Xiao, R.; Gu, S.; Zhao, M.; Liang, J.: Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating. J. Colloid Interface Sci. 463, 118–127 (2016)

    Article  Google Scholar 

  16. Hamzah, M.; Khenfouch, M.; Rjeb, A.; Sayouri, S.; Houssaini, D.S.; Darhouri, M.; Srinivasu, V.V.: Surface chemistry changes and microstructure evaluation of low density nanocluster polyethylene under natural weathering: a spectroscopic investigation. IOP Conf. Ser. J. Phys. Conf. Ser. 984, 012010 (2018)

    Article  Google Scholar 

  17. Gómez-Sánchez, E.; Simon, S.; Koch, L.C.; Wiedmann, A.; Weber, T.; Mengel, M.: Atr-FTIR spectroscopy for the characterisation of magnetic tape materials. e-Preserv. Sci. 7, 2–9 (2010)

    Google Scholar 

  18. Park, S.N.; Park, J.; Kim, H.O.; Song, M.J.; Suh, H.: Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials 23(4), 1205–1212 (2002)

    Article  Google Scholar 

  19. Vidale, M.; Craig, O.; Desset, F.; Guida, G.; Bianchetti, P.; Sidoti, G.; Mariottini, M.; Battistella, E.: A chlorite container found on the surface of Shahdad (Kerman, Iran) and its cosmetic content. J. Brit. Inst. Perss. Stud. 50(1), 27–44 (2012)

    Google Scholar 

  20. Ramamurthy, N.; Kannan, S.: Fourier transform infrared spectroscopic analysis of a plant (Calotropis gigantea Linn) from an Industrial Village, Cuddalore Dt, Tamilnadu, India. Rom. J. Biophys. 17(4), 269–276 (2007)

    Google Scholar 

  21. Gabrienko, A.A.; Danilova, I.G.; Arzumanov, S.S.; Toktarev, A.V.; Freude, D.; Stepanov, A.G.: Strong acidity of silanol groups of zeolite beta: evidence from the studies by IR spectroscopy of adsorbed CO and 1 H MAS NMR. Microporous Mesoporous Mater. 131, 210–216 (2010)

    Article  Google Scholar 

  22. Sergeeva, A.V.; Zhitova, E.S.; Nuzhdaev, A.A.; Zolotarev, A.A.; Bocharov, V.N.; Ismagilova, R.M.: Infrared and Raman spectroscopy of ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18. Minerals 10(9), 781 (2020)

    Article  Google Scholar 

  23. Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G.: Observation of potential contaminants in processed biomass using Fourier transform infrared spectroscopy. Appl. Sci. 10, 4345 (2020)

    Article  Google Scholar 

  24. Lewis, P.D.; Lewis, K.E.; Ghosal, R.; Bayliss, S.; Lloyd, A.J.; Wills, J.; Godfrey, R.; Kloer, P.; Mur, L.A.J.: Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer 10, 640 (2010)

    Article  Google Scholar 

  25. Hoffmann, G.; Veszpremi, T.; Nagy, A.: Properties of IR spectra of phosphorus doped SiO2 films. Period. Polytech. Chem. Eng. Hun Da 23(3), 175–184 (1979)

    Google Scholar 

  26. Melniciuc, P.N.; Pui, A.; Florescu, M.: FTIR spectroscopy for the analysis of vegetable tanned ancient leather. Eur. J. Sci. Theol. 2(4), 49–53 (2006)

    Google Scholar 

  27. Basile, F.; Bersani, I.; Del Gallo, P.; Fiorilli, S.; Fornasari, G.; Gary, D.; Mortera, R.; Onida, B.; Vaccari, A.: In situ IR characterization of CO interacting with Rh nanoparticles obtained by calcination and reduction of hydrotalcite-type precursors. Int. J. Spectrosc. (2011). https://doi.org/10.1155/2011/458089

    Article  Google Scholar 

  28. Kadhim, A.J.: Synthesis and characterization benzimidazole ring by using O-phenylinediamine with different compounds and using mannich reaction to preparation some of derivatives. Orient. J. Chem. 34(1), 473–481 (2018)

    Article  Google Scholar 

  29. Gipson, K.; Stevens, K.; Brown, P.; Ballato, J.: Infrared spectroscopic characterization of photoluminescent polymer nanocomposites. Spectrosc. Mater. Chem. (2015). https://doi.org/10.1155/2015/489162

    Article  Google Scholar 

  30. Veiderma, M.; Knubovets, R.; Tönsuaadu, K.: Structural properties of apatites from Finland studied by FTIR spectroscopy. Bull. Geol. Soc. Finl. 70, 69–75 (1998)

    Article  Google Scholar 

  31. Gupta, V.K.; Nayak, A.; Agarwal, S.; Chaudhary, M.; Tyagi, I.: Removal of Ni(II) ions from water using scrap tire. J. Mol. Liq. 190, 215–222 (2014)

    Article  Google Scholar 

  32. Rao, M.M.; Ramana, D.K.; Seshaiah, K.; Wang, M.C.; Chien, S.W.C.: Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. J. Hazard. Mater. 166, 1006–1013 (2009)

    Article  Google Scholar 

  33. Saleh, T.A.; Alhooshani, K.R.; Abdelbassit, M.S.A.: Evaluation of AC/ZnO composite for sorption of dichloromethane, trichloromethane and carbon tetrachloride: kinetics and isotherms. J. Taiwan Inst. Chem. Eng. 55, 159–169 (2015)

    Article  Google Scholar 

  34. Kong, J.; Yue, Q.; Sun, S.; Gao, B.; Kan, Y.; Li, Q.; Wang, Y.: Adsorption of Pb(II) from aqueous solution using keratin waste–hide waste: equilibrium, kinetic and thermodynamic modeling studies. Chem. Eng. J. 241, 393–400 (2014)

    Article  Google Scholar 

  35. Ahmadi, F.; Esmaeili, H.: Chemically modified bentonite/Fe3O4 nanocomposite for Pb(II), Cd(II), and Ni(II) removal from synthetic wastewater. Desalin. Water Treat. 110, 154–167 (2018)

    Article  Google Scholar 

  36. Dong, L.; Zhu, Z.; Ma, H.; Qiu, Y.; Zhao, J.: Simultaneous adsorption of lead and cadmium on MnO2-loaded resin. J. Environ. Sci. 22, 225–229 (2010)

    Article  Google Scholar 

  37. Rathinam, A.; Maharshi, B.; Janardhanan, S.K.; Jonnalagadda, R.R.; Nair, B.U.: Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: a kinetic and thermodynamic study. Bioresour. Technol. 101, 1466–1470 (2010)

    Article  Google Scholar 

  38. Teimouri, A.; Esmaeili, H.; Foroutan, R.; Ramavandi, B.: Adsorptive performance of calcined Cardita bicolor for attenuating Hg(II) and As(III) from synthetic and real wastewaters. Korean J. Chem. Eng. 35, 479–488 (2018)

    Article  Google Scholar 

  39. Foroutan, R.; Khoo, F.S.; Ramavandi, B.; Abbasi, S.: Heavy metals removal from synthetic and shipyard wastewater using Phoenix dactylifera activated carbon. Desalin. Water Treat. 82, 146–156 (2017)

    Article  Google Scholar 

  40. Gusain, D.; Srivastava, V.; Sharma, Y.C.: Kinetic and thermodynamic studies on the removal of Cu(II) ions from aqueous solutions by adsorption on modified sand. J. Ind. Eng. Chem. 20, 841–847 (2014)

    Article  Google Scholar 

  41. Guyo, U.; Mhonyera, J.; Moyo, M.: Pb(II) adsorption from aqueous solutions by raw and treated biomass of maize stover—a comparative study. Process Saf. Environ. Prot. 93, 192–200 (2015)

    Article  Google Scholar 

  42. Rangabhashiyam, S.; Selvaraju, N.: Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell. J. Mol. Liq. 207, 39–49 (2015)

    Article  Google Scholar 

  43. Kizilkaya, B.; Tekinay, A.A.; Dilgin, Y.: Adsorption and removal of Cu(II) ions from aqueous solution using pretreated fish bones. Desalination 264, 37–47 (2010)

    Article  Google Scholar 

  44. Lee, K.J.; Miyawaki, J.; Shiratori, N.; Yoon, S.-H.; Jang, J.: Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon. J. Hazard. Mater. 260, 82–88 (2013)

    Article  Google Scholar 

  45. Mehrizad, A.; Aghaie, M.; Gharbani, P.; Dastmalchi, S.; Monajjemi, M.; Zare, K.: Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes. Iran. J. Environ. Health Sci. Eng. 9, 5 (2012)

    Article  Google Scholar 

  46. Sivakumar, S.; Muthirulan, P.; Sundaram, M.M.: Adsorption kinetic and isotherm studies of Azure A on various activated carbons derived from agricultural wastes. Arab. J. Chem. 12, 1507–1514 (2019)

    Article  Google Scholar 

  47. Özer, A.; Pirincci, H.B.: The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran. J. Hazard. Mater. 137, 849–855 (2006)

    Article  Google Scholar 

  48. Abdel-Ghani, N.T.; El-Chaghaby, G.A.; Helal, F.S.: Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J. Adv. Res. 6(3), 405–415 (2015)

    Article  Google Scholar 

  49. Guo, N.; Su, S.; Liao, B.; Ding, S.; Sun, W.: Preparation and properties of a novel macro porous Ni2+-imprinted chitosan foam adsorbents for adsorption of nickel ions from aqueous solution. Carbohydr. Polym. 165, 376–383 (2017)

    Article  Google Scholar 

  50. Liu, L.; Xie, J.P.; Li, Y.J.; Zhang, Q.; Yao, J.M.: Three-dimensional macroporous cellulose-based bioadsorbents for efficient removal of nickel ions from aqueous solution. Cellulose 23, 723–736 (2016)

    Article  Google Scholar 

  51. Tran, T.V.; Bui, Q.T.P.; Nguyen, T.D.H.; Le, N.T.; Bach, L.G.: A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology. Adsorpt. Sci. Technol. 35, 72–85 (2017)

    Article  Google Scholar 

  52. Pap, S.; Radonić, J.; Trifunović, S.; Adamović, D.; Mihajlović, I.; Miloradov, M.V.; Sekulića, M.T.: Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes. J. Environ. Manag. 184, 297–306 (2016)

    Article  Google Scholar 

  53. Thuan, T.V.; Quynh, B.T.P.; Nguyen, T.D.; Ho, V.T.T.; Bach, L.G.: Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surf. Interfaces 6, 209–217 (2017)

    Article  Google Scholar 

  54. Keränen, A.; Leiviskä, T.; Salakka, A.; Tanskanen, J.: Removal of nickel and vanadium from ammoniacal industrial wastewater by ion exchange and adsorption on activated carbon. Desalin. Water Treat. 53, 2645–2654 (2015)

    Article  Google Scholar 

  55. Pehlivan, E.; Arslan, G.: Removal of metal ions using lignite in aqueous solutiondlow cost biosorbents. Fuel Process. Technol. 88, 99–106 (2007)

    Article  Google Scholar 

  56. Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K.: Investigation of adsorption of lead, mercury and nickel from aqueous solutions onto carbon aerogel. J. Chem. Technol. Biotechnol. 80, 469–476 (2005)

    Article  Google Scholar 

  57. Malkoc, E.; Nuhoglu, Y.: Removal of Ni(II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column. J. Hazard. Mater. 135, 328–336 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khedri, A., Jafari, D. & Esfandyari, M. Adsorption of Nickel(II) Ions from Synthetic Wastewater Using Activated Carbon Prepared from Mespilus germanica Leaf. Arab J Sci Eng 47, 6155–6166 (2022). https://doi.org/10.1007/s13369-021-06014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06014-7

Keywords

Navigation