Skip to main content
Log in

An Improved Form of SPH Method and Its Numerical Simulation Study on the Rock Crack Propagation Containing Fissures and Holes

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Defects widely exist in rock masses, which have great impacts on the rock mechanical properties. The pre-existing fissures and holes are two common rock defects. In order to study the influence of hole shapes and fissure geometries on the failure modes and mechanical properties of rock masses, the derivatives of kernel functions in the traditional SPH method have been improved by introducing a fracture mark ξ, and a novel numerical method named improved kernel of smoothed particle hydrodynamics (IKSPH) has been developed to realize the simulations of rock fracture processes. The Monte Carlo method has also been introduced into the proposed method to realize the formations of random fissures. The small-scale numerical rock specimens with different hole shapes as well as random fissures are established. The crack propagation processes, the failure modes and the mechanical properties under uniaxial compression are simulated, results show that: ‘Wing cracks’ initiate from the random fissures, whose locations and interaction modes differ according to the geometries of random fissures. For rectangle hole, the crack initiations mainly occur at the upper and lower edges as well as the corners; for circular hole, tensile cracks appear at the 6 and 12 o’clock directions, meanwhile, shear cracks initiate at the 5 and 7 o’clock direction after the tensile crack propagates to a certain extent; for trapezoid and triangle hole, crack initiations mostly appear at the corners of the hole; the length and quantity of pre-existing fissures have greater influences on the mechanical properties of rock masses than the hole shapes and fissure dip angles. The research results can provide guidance for the correct understandings of fractured rock mechanisms. Meanwhile, the proposed method can also provide references for the applications of SPH method into simulations of rock fracture mechanics. At the same time, future research focus should be put on the applications of IKSPH method into engineering practices and developing high-performance IKSPH programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Horodecky, B.B.; Perfect, E.; Bilheux, H.Z., et al.: Onset dynamics of air-water menisci on rock fracture surfaces. Adv. Water Resour. 146, 103754 (2020)

    Article  Google Scholar 

  2. Rong, G.; Tan, J.; Zhan, H., et al.: Quantitative evaluation of fracture geometry influence on nonlinear flow in a single rock fracture. J. Hydrol. 589, 125162 (2020)

    Article  Google Scholar 

  3. Pyrak-Nolte, L.J.; Braverman, W.; Nolte, N.J., et al.: Probing complex geophysical geometries with chattering dust. Nat. Commun. 11(1), 5282 (2020)

    Article  Google Scholar 

  4. Huang, L.; Su, X.; Tang, H.: Optimal selection of estimator for obtaining an accurate three-dimensional rock fracture orientation distribution. Eng. Geol 270, 105575 (2020)

    Article  Google Scholar 

  5. Li, Q.; Gao, Z.H.; Xu, W.L., et al.: Experimental research on the dynamic propagation process of mode I cracks in the rock under directional fracture blasting using the strain gauge method. Eng. Fract. Mech. 235, 107113 (2020)

    Article  Google Scholar 

  6. Yu, L.; Yao, Q.; Li, X., et al.: Experimental study of failure characteristics and fissure propagation in hydrous siltstone. Arab. J. Geosci. 13(13), 527 (2020)

    Article  Google Scholar 

  7. Shu, B.; Zhu, R.; Zhang, S., et al.: A qualitative prediction method of new crack-initiation direction during hydraulic fracturing of pre-cracks based on hyperbolic failure envelope. Appl. Energy 248(15), 185–195 (2019)

    Article  Google Scholar 

  8. Horii, H.; Nemat-Nasser, S.: Elastic fields of interacting inhomogeneities. Int. J. Solids Struct. 21(7), 731–745 (1985)

    Article  Google Scholar 

  9. Zhu, W.; Li, Z.; Chen, W.: Failure Mechanism and Anchoring Effect of Jointed Rock Mass and Its Engineering Application. Science Press, Beijing (2002)

    Google Scholar 

  10. Kirsch, C.: Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Z. Vereines Deutscher Ingenieure 42, 797–807 (1898)

    Google Scholar 

  11. Mendelson, A.: Plasticity: Theory and Application. Macmillan, New York (1968)

    Google Scholar 

  12. Ingraffea, A.R.; Heuze, F.E.: Finite element models for rock fracture mechanics. Int. J. Numer. Anal. Meth. Geomech. 4(1), 25–43 (2010)

    Article  Google Scholar 

  13. Branco, R.; Antunes, F.V.; Costa, J.D.: A review on 3D-FE adaptive remeshing techniques for crack growth modelling. Eng. Fract. Mech. 141, 170–195 (2015)

    Article  Google Scholar 

  14. Zhang, L.: Systematic investigation of the planar shape of rock fractures using PFC3D numerical experiments. Can. J. Cardiol. 28(6), 750–757 (2012)

    Article  Google Scholar 

  15. Haeri, H.; Sarfarazi, V.; Zhu, Z.: Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC). Comput. Concr. 19(1), 99–110 (2017)

    Article  Google Scholar 

  16. Ohnishi, Y.; Sasaki, T.; Koyama, T., et al.: Recent insights into analytical precision and modelling of DDA and NMM for practical problems. Geomech. Geoeng. 9(2), 97–112 (2014)

    Article  Google Scholar 

  17. Miki, S.; Sasaki, T.; Koyama, T., et al.: Development of coupled discontinuous deformation analysis and numerical manifold method (NMM–DDA). Int. J. Comput. Methods 7(01), 131–150 (2010)

    Article  MathSciNet  Google Scholar 

  18. Shou, Y.D.; Zhou, X.P.; Qian, Q.H.: Dynamic model of the zonal disintegration of rock surrounding a deep spherical cavity. Int. J. Geomech. 17(6), 04016127 (2016)

    Article  Google Scholar 

  19. Zhou, X.P.; Shou, Y.D.: Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method. Int. J. Geomech. 04016086.

  20. Nguyen-Thanh, N.; Li, W.; Huang, J.: Adaptive higher-order phase-field modeling of anisotropic brittle fracture in 3D polycrystalline materials. Comput. Methods Appl. Mech. Eng. 372(1), 113434 (2020)

    Article  MathSciNet  Google Scholar 

  21. Li, W.; Nhon, N.-T.; Zhou, K.: Phase-field modeling of brittle fracture in a 3D polycrystalline material via an adaptive isogeometric-meshfree approach. Int. J. Numer. Methods Eng. 121(22), 5042–5065 (2020)

    Article  MathSciNet  Google Scholar 

  22. Müller, A.; Vargas, E.A. Stability analysis of a slope under impact of a rock block using the generalized interpolation material point method (GIMP). Landslides (2019)

  23. Vonneumann, J.; Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232 (1950)

    Article  MathSciNet  Google Scholar 

  24. Libersky, L.D.; Petschek, A.G.; Carney, T.C.; Allahdadi, F.A.: High strain Lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response. J. Comput. Phys. 109(1), 67–75 (1993)

    Article  Google Scholar 

  25. Yang, Y.; Tang, X.; Zheng, H.; Liu, Q.; He, L.: Three-dimensional fracture propagation with numerical manifold method. Eng. Anal. Boundary Elem. 72, 65–77 (2016)

    Article  MathSciNet  Google Scholar 

  26. Weibull, W.: A statistical theory of the strength of materials. Ing. Vet. Ak. Handl. 151, 5–44 (1939)

    Google Scholar 

  27. Han, W.; Jiang, Y.; Luan, H. et al. Numerical investigation on the shear behavior of rock-like materials containing fissure-holes with FEM-CZM method. Comput. Geotech. 125

  28. Li, C.; Li, X.; Li, D.: Granular flow analysis of pore-bearing marble failure characteristics. J. Eng. Sci. 39(12), 1791–1801 (2017)

    Google Scholar 

  29. Chen, S.; Xia, Z.; Feng, F.; Yin, D.: Numerical study on strength and failure characteristics of rock samples with different hole defects. Bull. Eng. Geol. Environ. 7, 1–18 (2020)

    Google Scholar 

  30. Zhao, G.; Wang, E.; Wu, H.: The evolution law of fine fracture of porous sandstone under uniaxial compression. J. Cent. South Univ. (Nat. Sci. Edn.) 50(08), 1891–1900 (2019)

    Google Scholar 

  31. Liu, L.; Li, H.; Li, X. et al. Full-field strain evolution and characteristic stress levels of rocks containing a single pre-existing flaw under uniaxial compression. Bull. Eng. Geol. Enviro. 2020(4)

  32. Ghazvinian, A.; Nejati, H.R.; Sarfarazi, V., et al.: Mixed mode crack propagation in low brittle rock-like materials. Arab. J. Geosci. 6(11), 4435–4444 (2013)

    Article  Google Scholar 

  33. Zhu, D.; Chen, Z.; Xi, J.: Analysis on interaction law of parallel offset cracks in rock. J. Geotech. Eng. 39(02), 235–243 (2017)

    Google Scholar 

  34. Bobet, A.; Einstein, H.: Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J. Rock Mech. Min. 35(7), 863–888 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supports of the National Natural Science Fund (Grant No. U1765204), and the National Natural Science Found (51409170).

Funding

Project (U1765204) supported by National Natural Science Foundation of China; Project (51409170) supported by National Natural Science Foundation of China; “the Fundamental Research Funds for the Central Universities” (B210203078).

Author information

Authors and Affiliations

Authors

Contributions

X-HR provided the ideas, S-YY did the numerical simulation and wrote the draft, H-JW, J-XZ, Z-HS edited the draft.

Corresponding author

Correspondence to Shu-Yang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, XH., Yu, SY., Wang, HJ. et al. An Improved Form of SPH Method and Its Numerical Simulation Study on the Rock Crack Propagation Containing Fissures and Holes. Arab J Sci Eng 46, 11303–11317 (2021). https://doi.org/10.1007/s13369-021-05784-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05784-4

Keywords

Navigation