Skip to main content

Advertisement

Log in

Effect of Combined Supplementary Cementitious Materials on the Fresh and Mechanical Properties of Eco-Efficient Self-Compacting Concrete

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Global concrete demand is causing depletion of natural resources at an alarming rate. Self-compacting concrete (SCC) is an innovative solution as it uses less aggregates; however, the drawback of SCC is that high cement content is required compared to conventional concrete. Considering that cement production emits 7% of carbon dioxide (CO2) gas emissions, the use of high content of cement in SCC production is concerning. Though the high powder content of SCC may be of a concern, however, it allows the opportunity to substitute the cement content with supplementary cementitious materials. This experimental work was therefore conducted to reduce the cement content by substituting it with waste materials, such as eggshell powder (ESP) and palm oil fuel ash (POFA), and develop an eco-efficient SCC. The cement content was partially substituted by 0 to 5% ESP and 0 to 15% POFA by weight of total binder. A total of 90 cubes of 100 mm and 60 cylinders of 100 × 200 mm dimension were prepared to evaluate the compressive and splitting tensile strengths, modulus of elasticity, and Poisson’s ratio. Furthermore, the environmental impact assessment was conducted to assess the embodied CO2 and eco-strength efficiency of the developed eco-efficient SCC. It was found that the combination of POFA and ESP increased pozzolanic reactivity, developing additional calcium silicate hydrate gels, thus increasing strength. The combination of 2.5% ESP and 5% POFA (a total of 7.5% cement substitution) was deemed to be the optimal combination as it provided better strength in SCC after 28 days of curing, which leads to 9.66% higher compressive strength than the control SCC. Furthermore, the developed SCC was observed to be eco-friendly as it reduced embodied carbon ranging from 3.86 to 15.33% and eco-efficiency ranging from 2.38 to 15.48% on 28 days compared to the control SCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kamaruddin, S.; Goh, W.I.; Jhatial, A.A.; Mohd Zuki, S.S.; Faiz, A.: Self-compacting concrete with incorporation of recycled concrete aggregates. Int. J. Integr. Eng. 11(9), 164–173 (2019)

    Google Scholar 

  2. Bradu, A.; Cazacu, N.; Florea, N.; Mihai, P.: Compressive strength of self compacting concrete. Bul. Ina. Politeh. Din Iasi 62(66), 59–68 (2016)

    Google Scholar 

  3. Muhammad, A.; Usman, N.; Gambo, N.: Effect of binary blended pozzolanic materials on properties of self-compacting concrete. Int. J. Constr. Manag. (2020). https://doi.org/10.1080/15623599.2019.1707500

    Article  Google Scholar 

  4. Memon, M.J.; Jhatial, A.A.; Murtaza, A.; Raza, M.S.; Phulpoto, K.B.: Production of eco-friendly concrete incorporating rice husk ash and polypropylene fibres. Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-13418-3

    Article  Google Scholar 

  5. Zhang, J.; Liu, G.; Chen, B.; Song, D.; Qi, J.; Liu, X.: Analysis of CO2 emission for the cement manufacturing with alternative raw materials: a LCA-based framework. Energy Procedia 61, 2541–2545 (2014). https://doi.org/10.1016/j.egypro.2014.12.041

    Article  Google Scholar 

  6. Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A.: Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 51, 142–161 (2013). https://doi.org/10.1016/j.jclepro.2012.10.049

    Article  Google Scholar 

  7. Hanein, T.; Galvez-Martos, J.-L.; Bannerman, M.N.: Carbon footprint of calcium sulfoaluminate clinker production. J. Clean. Prod. 172, 2278–2287 (2018). https://doi.org/10.1016/j.jclepro.2017.11.183

    Article  Google Scholar 

  8. Aljoumaily, Z.S.; Noordin, N.; Awang, H.; Almulali, M.Z.: The effect of blast furnace slag on foam concrete in terms of compressive strength, Adv. Mater. Res., 587, 81–87, 2012, https://doi.org/10.4028/www.scientific.net/AMR.587.81

  9. Hasanbeigi, A.; Menke, C.; Price, L.: The CO2 abatement cost curve for the Thailand cement industry. J. Clean. Prod. 18(15), 1509–1518 (2010). https://doi.org/10.1016/j.jclepro.2010.06.005

    Article  Google Scholar 

  10. Ranjbar, N.; Mehrali, M.; Alengaram, U.J.; Metselaar, H.S.C.; Jumaat, M.Z.: Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Constr. Build. Mater. 65, 114–121 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.064

    Article  Google Scholar 

  11. Assi, L.; Carter, K.; Deaver, E.E.; Anay, R.; Ziehl, P.: Sustainable concrete: building a greener future. J. Clean. Prod. 198, 1641–1651 (2018). https://doi.org/10.1016/j.jclepro.2018.07.123

    Article  Google Scholar 

  12. Raza, M.S.; Rai, K.; Kumar, D.; Ali, M.: Experimental study of physical, fresh-state and strength parameters of concrete incorporating wood waste ash as a cementitious material. J. Mater. Eng. Struct. 7(2), 267–276 (2020)

    Google Scholar 

  13. Liew, K.M.; Sojobi, A.O.; Zhang, L.W.: Green concrete: prospects and challenges. Constr. Build. Mater. 156, 1063–1095 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.008

    Article  Google Scholar 

  14. Voora V.; Larrea C.; Bermudez S.; Baliño S.: Global Market Report: Palm Oil, (2020). https://www.iisd.org/publications/global-market-report-palm-oil (Accessed Dec. 25, 2020)

  15. Malaysian Palm Oil Council: Monthly Palm Oil Trade Statistics : January–December 2019, (2020). http://mpoc.org.my/monthly-palm-oil-trade-statistics-2019/ (Accessed Dec. 25, 2020)

  16. Ahmadi, R.; Zainudin, N.; Ismail, I.; Mannan, M.A.; Abidin, A.S.Z.: Micro fine sized palm oil fuel ash produced using a wind tunnel production system. Adv. Mater. Sci. Eng. 2016, 1–6 (2016). https://doi.org/10.1155/2016/6792731

    Article  Google Scholar 

  17. Tangchirapat, W.; Jaturapitakkul, C.; Chindaprasirt, P.: Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. Constr. Build. Mater. 23(7), 2641–2646 (2009). https://doi.org/10.1016/j.conbuildmat.2009.01.008

    Article  Google Scholar 

  18. Palm Oil Analytics: Essential Palm Oil Statistics 2017, (2020). http://www.palmoilanalytics.com/files/epos-final-59.pdf (Accessed Oct. 13, 2020)

  19. Yu, T.Y.; Ing, D.S.; Choo, C.S.: The effect of different curing methods on the compressive strength of eggshell concrete. Indian J. Sci. Technol. 10(6), 1–4 (2017). https://doi.org/10.17485/ijst/2017/v10i6/111210

    Article  Google Scholar 

  20. Jhatial, A.A.; Goh, W.I.; Sohu, S.; Mangi, S.A.; Mastoi, A.K.: Preliminary investigation of thermal behavior of lightweight foamed concrete incorporating palm oil fuel ash and eggshell powder. Period. Polytech. Civ. Eng. 65(1), 168–180 (2021). https://doi.org/10.3311/PPci.16498

    Article  Google Scholar 

  21. Shafigh, P.; Bin Mahmud, H.; Jumaat, M.Z.; Zargar, M.: Agricultural wastes as aggregate in concrete mixtures—a review. Constr. Build. Mater. 53, 110–117 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.074

    Article  Google Scholar 

  22. Madurwar, M.V.; Ralegaonkar, R.V.; Mandavgane, S.A.: Application of agro-waste for sustainable construction materials: a review. Constr. Build. Mater. 38, 872–878 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.011

    Article  Google Scholar 

  23. Tay, J.: Ash from oil-palm waste as a concrete material. J. Mater. Civ. Eng. 2(2), 94–105 (1990). https://doi.org/10.1061/(ASCE)0899-1561(1990)2:2(94)

    Article  Google Scholar 

  24. Jaturapitakkul, C.; Tangpagasit, J.; Songmue, S.; Kiattikomol, K.: Filler effect and pozzolanic reaction of ground palm oil fuel ash. Constr. Build. Mater. 25(11), 4287–4293 (2011). https://doi.org/10.1016/j.conbuildmat.2011.04.073

    Article  Google Scholar 

  25. Idris, M.H.M., Khairunisa, M., Rokiah, O.: Effect of palm oil fuel ash as partial cement replacement on strength of foamed palm oil clinker concrete. Natl. Conf. Postgrad. Res. 2016, Univ. Malaysia Pahang, no. October 2016, pp. 115–119, (2016)

  26. Ranjbar, N.; Behnia, A.; Alsubari, B.; Moradi Birgani, P.; Jumaat, M.Z.: Durability and mechanical properties of self-compacting concrete incorporating palm oil fuel ash. J. Clean. Prod. 112, 723–730 (2016). https://doi.org/10.1016/j.jclepro.2015.07.033

    Article  Google Scholar 

  27. Islam, M.M.U.; Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.: Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. J. Clean. Prod. 115, 307–314 (2016). https://doi.org/10.1016/j.jclepro.2015.12.051

    Article  Google Scholar 

  28. Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T.: Effect of fly ash fineness on microstructure of blended cement paste. Constr. Build. Mater. 21(7), 1534–1541 (2007). https://doi.org/10.1016/j.conbuildmat.2005.12.024

    Article  Google Scholar 

  29. Jain, N.; Garg, M.; Minocha, A.K.: Green concrete from sustainable recycled coarse aggregates: mechanical and durability properties. J. Waste Manag. 2015, 1–8 (2015). https://doi.org/10.1155/2015/281043

    Article  Google Scholar 

  30. Khalid, N.H.A., et al.: Palm oil fuel ash as potential green micro-filler in polymer concrete. Constr. Build. Mater. 102, 950–960 (2016). https://doi.org/10.1016/j.conbuildmat.2015.11.038

    Article  Google Scholar 

  31. Jhatial, A.A.; Goh, W.I.; Mohamad, N.; Mo, K.H.; Sohu, S.: Incorporation of palm oil fuel ash and egg shell powder as supplementary cementitious materials in sustainable foamed concrete. Teh. Vjesn. (2020). https://doi.org/10.17559/TV-20190326112511

    Article  Google Scholar 

  32. Freire, M.N.; Holanda, J.N.F.: Characterization of avian eggshell waste aiming its use in a ceramic wall tile paste. Cerâmica 52, 240–244 (2006)

    Article  Google Scholar 

  33. Afolayan, J.O.; Oriola, F.O.P.; Moses, G.; Sani, J.E.: Investigating the effect of eggshell ash on the properties of sandcrete block, Int. J. Civ. Eng. Constr. Estate Manag., 5(3), 43–54, 2017, [Online]. Available: https://www.researchgate.net/publication/319493954

  34. Yerramala, A.: Properties of concrete with eggshell powder as cement replacement. Indian Concr. J. 88(10), 94–102 (2014)

    Google Scholar 

  35. Department Veterinary Service Report: Consumption of Livestock Products, 2013–2019, http://www.dvs.gov.my/dvs/resources/user_1/2019/BP/Perangkaan%20Ternakan%2020182019/1)_Malaysia_Perangkaan_Ternakan.pdf, (2020)

  36. Altuntas, E.; Sekeroglu, A.: Mechanical behavior and physical properties of chicken egg as affected by different egg weights. J. Food Process Eng. 33(1), 115–127 (2010). https://doi.org/10.1111/j.1745-4530.2008.00263.x

    Article  Google Scholar 

  37. Murakami, F.S.; Rodrigues, P.O.; de Campos, C.M.T.; Silva, M.A.S.: Physicochemical study of CaCO3 from egg shells. Ciência e Tecnol. Aliment. 27(3), 658–662 (2007). https://doi.org/10.1590/S0101-20612007000300035

    Article  Google Scholar 

  38. Gowsika, D.; Kokila, S.S.; Sargunan, K.: Experimental investigation of egg shell powder as partial replacement with cement in concrete. Int. J. Eng. Trends Technol. 14(1), 65–68 (2014). https://doi.org/10.14445/22315381/IJETT-V14P214

    Article  Google Scholar 

  39. Raji, S.A.; Samuel, A.T.: Egg shell as a fine aggregate in concrete for sustainable construction. Int. J. Sci. Technol. Res. 4(8), 8–13 (2015)

    Google Scholar 

  40. Parthasarathi, N.; Prakash, M.; Satyanarayanan, K.S.: Experimental study on partial replacement of cement with egg shell powder and silica fume. Rasayan J. Chem. 10(2), 442–449 (2017). https://doi.org/10.7324/RJC.2017.1021689

    Article  Google Scholar 

  41. Jhatial, A.A.; Goh, W.I.; Rind, T.A.; Kumar, A.: Thermal performance simulation of eco-friendly lightweight foamed concrete incorporating palm oil fuel ash and eggshell powder using ABAQUS. Silicon (2021). https://doi.org/10.1007/s12633-020-00907-2

    Article  Google Scholar 

  42. Mohamad, M.E.; Mahmood, A.A.; Min, A.Y.Y.; AR, N.N.: Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as partial replacement for cement in concrete. E3S Web Conf 34, 01004 (2018). https://doi.org/10.1051/e3sconf/20183401004

    Article  Google Scholar 

  43. Kamaruddin, S.; Goh, W.I.; Jhatial, A.A.; Lakhiar, M.T.: Chemical and fresh state properties of foamed concrete incorporating palm oil fuel ash and eggshell ash as cement replacement. Int. J. Eng. Technol. 7(4.30), 350 (2018). https://doi.org/10.14419/ijet.v7i4.30.22307

    Article  Google Scholar 

  44. Rahman, A.F.; Goh, W.I.; Mohamad, N.; Kamarudin, M.S.; Jhatial, A.A.: Numerical analysis and experimental validation of reinforced foamed concrete beam containing partial cement replacement. Case Stud. Constr. Mater. (2019). https://doi.org/10.1016/j.cscm.2019.e00297

    Article  Google Scholar 

  45. Rahman, A.F.; Goh, W.I.; Jhatial, A.A.: Flexural study of reinforced foamed concrete beam containing palm oil fuel ash (POFA) and eggshell powder (ESP) as partial cement replacement”. Int. J. Sustain. Constr. Eng. Technol. (2019). https://doi.org/10.30880/ijscet.2019.10.01.009

    Article  Google Scholar 

  46. Khankhaje, E., et al.: On blended cement and geopolymer concretes containing palm oil fuel ash. Mater. Des. 89, 385–398 (2016). https://doi.org/10.1016/j.matdes.2015.09.140

    Article  Google Scholar 

  47. Alsubari, B.; Shafigh, P.; Jumaat, M.: Development of self-consolidating high strength concrete incorporating treated palm oil fuel ash. Bul. INSTITUTULUI Politeh. DIN IAŞI 8(5), 2154–2173 (2015). https://doi.org/10.3390/ma8052154

    Article  Google Scholar 

  48. Base Concrete: Different Types of Concrete Grades and Their Uses (2018)

  49. EFNARC: Specification and Guidelines for Self-Compacting Concrete (2005)

  50. Chopra, D.; Siddique, R.; Kunal: Strength, permeability and microstructure of self-compacting concrete containing rice husk ash, Biosyst. Eng., 130, 72–80, doi: https://doi.org/10.1016/j.biosystemseng.2014.12.005 (2015)

  51. ASTM C114-18: Standard Test Methods for Chemical Analysis of Hydraulic Cement (2018)

  52. BS EN 12390-3: Testing hardened concrete. Compressive strength of test specimens (2019)

  53. BS EN 12390-6: Testing hardened concrete: Tensile splitting strength of test specimens (2009)

  54. BS EN 12390-13: Testing hardened concrete. Determination of secant modulus of elasticity in compression, British Standards Institution, London, (2013)

  55. Ramzi, N.I.R.; Shahidan, S.; Maarof, M.Z.; Ali, N.: Physical and chemical properties of coal bottom ash (CBA) from Tanjung Bin Power Plant. IOP Conf. Ser. Mater. Sci. Eng. 160, 012056 (2016). https://doi.org/10.1088/1757-899X/160/1/012056

    Article  Google Scholar 

  56. Binici, H.; Kapur, S.; Rızaoğlu, T.; Kara, M.: Resistance to Thaumasite form of sulphate attack of blended cement mortars. Br. J. Appl. Sci. Technol. 4(31), 4356–4379 (2014). https://doi.org/10.9734/BJAST/2014/11948

    Article  Google Scholar 

  57. Oyejobi, D.; Abdulkadir, T.S.; Ahmed, A.T.: A study of partial replacement of cement with palm oil fuel ash in concrete production. J. Agric. Technol. 12(4), 619–631 (2016)

    Google Scholar 

  58. Jhatial, A.A.; Goh, W.I.; Mastoi, A.K.; Rahman, A.F.; Kamaruddin, S.: Thermo-mechanical properties and sustainability analysis of newly developed eco-friendly structural foamed concrete by reusing palm oil fuel ash and eggshell powder as supplementary cementitious materials. Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-13435-2

    Article  Google Scholar 

  59. Mujah, D.: Compressive strength and chloride resistance of grout containing ground palm oil fuel ash. J. Clean. Prod. 112, 712–722 (2016). https://doi.org/10.1016/j.jclepro.2015.07.066

    Article  Google Scholar 

  60. Long, G.; Gao, Y.; Xie, Y.: Designing more sustainable and greener self-compacting concrete. Constr. Build. Mater. 84, 301–306 (2015). https://doi.org/10.1016/j.conbuildmat.2015.02.072

    Article  Google Scholar 

  61. Alnahhal, M.F.; Alengaram, U.J.; Jumaat, M.Z.; Abutaha, F.; Alqedra, M.A.; Nayaka, R.R.: Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. J. Clean. Prod. 203, 822–835 (2018). https://doi.org/10.1016/j.jclepro.2018.08.292

    Article  Google Scholar 

  62. Egg-machine.com, “Eggshell Grinding Machine,” 2021. https://www.egg-machine.com/product/eggshell-grinding-machine.html (Accessed Feb. 26, 2021)

  63. DECC, “2011 Guidelines to Defra/DECC’s GHG. Conversion Factors for Company Reporting: Methodology Paper for Emission Factors,” 2011. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69314/pb13625-emission-factor-methodology-paper-110905.pdf

  64. Flower, D.J.M.; Sanjayan, J.G.: Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 12(5), 282–288 (2007). https://doi.org/10.1065/lca2007.05.327

    Article  Google Scholar 

  65. Turner, L.K.; Collins, F.G.: Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125–130 (2013). https://doi.org/10.1016/j.conbuildmat.2013.01.023

    Article  Google Scholar 

  66. Yang, K.-H.; Song, J.-K.; Song, K.-I.: Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 39, 265–272 (2013). https://doi.org/10.1016/j.jclepro.2012.08.001

    Article  Google Scholar 

  67. Jhatial, A.A.; Goh, W.I.; Mohamad, N.; Sohu, S.; Lakhiar, M.T.: Utilization of palm oil fuel ash and eggshell powder as partial cement replacement—a review. Civ. Eng. J. 4(8), 1977 (2018). https://doi.org/10.28991/cej-03091131

    Article  Google Scholar 

  68. Zeyad, A.M.; Megat Johari, M.A.; Tayeh, B.A.; Yusuf, M.O.: Efficiency of treated and untreated palm oil fuel ash as a supplementary binder on engineering and fluid transport properties of high-strength concrete. Constr. Build. Mater. 125, 1066–1079 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.065

    Article  Google Scholar 

  69. Shakiba, M.; Rahgozar, P.; Elahi, A.R.; Rahgozar, R.: Effect of activated pozzolan with Ca(OH) 2 and nano-SiO2 on microstructure and hydration of high-volume natural pozzolan paste. Civ. Eng. J. 4(10), 2437 (2018). https://doi.org/10.28991/cej-03091171

    Article  Google Scholar 

  70. Uysal, M.; Yilmaz, K.: Effect of mineral admixtures on properties of self-compacting concrete. Cem. Concr. Compos. 33(7), 771–776 (2011). https://doi.org/10.1016/j.cemconcomp.2011.04.005

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge financial support received by the Research Management Centre (RMC), Universiti Tun Hussein Onn Malaysia under grant GPPS-H684.

Author information

Authors and Affiliations

Authors

Contributions

SK done conceptualization, investigation, data analysis, writing—original draft, funding acquisition. WIG performed supervision, methodology, writing—original draft, funding acquisition. NANAM contributed to investigation, data analysis. AAJ performed data analysis, writing—review and editing. NM done supervision and methodology. AFR investigated and analysed the data.

Corresponding author

Correspondence to Wan Inn Goh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaruddin, S., Goh, W.I., Abdul Mutalib, N.A.N. et al. Effect of Combined Supplementary Cementitious Materials on the Fresh and Mechanical Properties of Eco-Efficient Self-Compacting Concrete. Arab J Sci Eng 46, 10953–10973 (2021). https://doi.org/10.1007/s13369-021-05656-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05656-x

Keywords

Navigation