Skip to main content

Advertisement

Log in

Primary Frequency Regulation by Demand Side Response

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Recently, there have been growing attempts to replace conventional power generators with renewable energy sources. However, the inertia reduction that results from such measures jeopardizes the stability of the power system. Typically, power system operators utilize the spinning generating units to provide the required capacity to preserve system frequency where the carbon emission and wear/tear costs considerably affect their feasibility. Instead, this paper investigates the ability to use the existing assets (i.e., controllable demands) in providing the regulation needed to maintain the frequency within the allowable ranges. The proposed study reveals that the dynamically controlled space heaters were able to provide a fast primary response without a significant impact on the regular operation of the heaters. The proposed approach successfully reduced the conventional generator's regulating capacity during a sudden loss of generation/or a sudden increase in demand. Highlighting the impact of inertia reduction on the overall performance concludes the proposed study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C :

Heat capacity (kJ/kg K)

D :

Percentage of frequency sensitive loads (%)

E :

The energy in (MWh)

H :

Generator inertia (s)

K :

Lead-lag gain

\(M_{{{\text{air}}}}\) :

Mass of air (kg/m3)

\(M_{{{\text{dot}}}}\) :

Air mass flow (kg/h)

\(P_{{\text{L}}}\) :

Load power (MW)

\(P_{{\text{e}}}\) :

Electric power (MW)

\(P_{{\text{m}}}\) :

Mechanical power (MW)

\(P_{{\text{v}}}\) :

Valve power (MW)

R :

Droop characteristic constant

\(R_{{{\text{eq}}}}\) :

Building thermal resistance (k/W)

\(T_{1}\) :

Lead-lag controller time constant (s)

\(T_{2}\) :

Lead-lag controller time constant (s)

\(T_{{\text{T}}}\) :

Turbine time constant (s)

\(T_{{{\text{amb}}}}\) :

Ambient temperature F

\(T_{{\text{g}}}\) :

Governor time constant (s)

\(T_{{{\text{indoor}}}}\) :

Indoor temperature F

\(T_{{{\text{in}}}}\) :

Temperature reference F

\(T_{{{\text{room}}}}\) :

Room temperature F

\(\frac{{{\text{d}}Q}}{{{\text{d}}t}}\) :

Heat flow

\(\Delta f\) :

Frequency deviation in (p.u.)

\({\Delta }T\) :

Temperature difference in F

\(\Delta \omega\) :

Speed deviation in (p.u.)

References

  1. Shafiullah, M.; Rana, M.J.; Abido, M.A.: Power system stability enhancement through optimal design of PSS employing PSO. In 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), pp. 26–31 (2017). https://doi.org/10.1109/ICAEE.2017.8255321

  2. Samarakoon, K.; Ekanayake, J.; Jenkins, N.: Investigation of domestic load control to provide primary frequency response using smart meters. IEEE Trans. Smart Grid 3(1), 282–292 (2012). https://doi.org/10.1109/TSG.2011.2173219

    Article  Google Scholar 

  3. Akram, U.; Khalid, M.: A coordinated frequency regulation framework based on hybrid battery-ultracapacitor energy storage technologies. IEEE Access 6, 7310–7320 (2018). https://doi.org/10.1109/ACCESS.2017.2786283

    Article  Google Scholar 

  4. Alam, A.; Abido, M.A.: Parameter optimization of shunt FACTS controllers for power system transient stability improvement. In: 2007 IEEE Lausanne Power Tech, pp. 2012–2017 (2007). https://doi.org/10.1109/PCT.2007.4538627

  5. SEC: The Saudi Arabian Grid Code. Saudi Electricity Company (SEC), KSA, Issue 01, May 2007

  6. ELSEVIER: Scopus—Document search. https://www-scopus-com.extoljp.kfupm.edu.sa/search/form.uri?display=basic. Accessed November 21, 2018

  7. Tungadio, D.H.; Sun, Y.: Load frequency controllers considering renewable energy integration in power system. Energy Rep. 5, 436–453 (2019). https://doi.org/10.1016/j.egyr.2019.04.003

    Article  Google Scholar 

  8. Rohit, A.K.; Devi, K.P.; Rangnekar, S.: An overview of energy storage and its importance in Indian renewable energy sector: part I—technologies and comparison. J. Energy Storage 13, 10–23 (2017). https://doi.org/10.1016/j.est.2017.06.005

    Article  Google Scholar 

  9. Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y.: Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014

    Article  Google Scholar 

  10. Gustavsson, J.: Energy storage technology. Energy Storage Symposium. Available http://adsabs.harvard.edu/abs/1976enst.symp...54L (1976)

  11. Ramírez, M.; Castellanos, R.; Calderón, G.; Malik, O.: Placement and sizing of battery energy storage for primary frequency control in an isolated section of the Mexican power system. Electr. Power Syst. Res. 160, 142–150 (2018). https://doi.org/10.1016/j.epsr.2018.02.013

    Article  Google Scholar 

  12. Cheng, M.; Sami, S.S.; Wu, J.: Benefits of using virtual energy storage system for power system frequency response. Appl. Energy 194, 376–385 (2017). https://doi.org/10.1016/j.apenergy.2016.06.113

    Article  Google Scholar 

  13. Canevese, S.; Gatti, A.; Micolano, E.; Pellegrino, L.; Rapizza, M.: Battery energy storage systems for frequency regulation: simplified aging evaluation. In: 2017 6th International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, pp. 291–297 (2017). https://doi.org/10.1109/ICCEP.2017.8004830

  14. Drysdale, B.; Wu, J.; Jenkins, N.: Flexible demand in the GB domestic electricity sector in 2030. Appl. Energy 139, 281–290 (2015). https://doi.org/10.1016/j.apenergy.2014.11.013

    Article  Google Scholar 

  15. Bose, U.; Chattopadhyay, S.K.; Chakraborty, C.; Pal, B.: A novel method of frequency regulation in microgrid. IEEE Trans. Ind. Appl. 55(1), 111–121 (2019). https://doi.org/10.1109/TIA.2018.2866047

    Article  Google Scholar 

  16. Delavari, A.; Kamwa, I.: Virtual inertia-based load modulation for power system primary frequency regulation (2018). https://doi.org/10.1109/PESGM.2017.8274601

  17. Fang, J.; Li, H.; Tang, Y.; Blaabjerg, F.: Distributed power system virtual inertia implemented by grid-connected power converters. IEEE Trans. Power Electron. 33(10), 8488–8499 (2018). https://doi.org/10.1109/TPEL.2017.2785218

    Article  Google Scholar 

  18. Fang, J.; Li, X.; Tang, Y.; Li, H.: Power management of virtual synchronous generators through using hybrid energy storage systems (2018). https://doi.org/10.1109/APEC.2018.8341201

  19. Saeed Uz Zaman, M.; Bukhari, S.B.A.; Hazazi, K.M.; Haider, Z.M.; Haider, R.; Kim, C.-H.: Frequency response analysis of a single-area power system with a modified LFC model considering demand response and virtual inertia. Energies (2018). https://doi.org/10.3390/en11040787

  20. Wu, D.; Guerrero, J.M.; Vasquez, J.C.; Dragicevic, T.; Tang, F.: Coordinated power control strategy based on primary-frequency-signaling for islanded microgrids (2013). https://doi.org/10.1109/ECCE.2013.6646817

  21. Guruprasad, R.; Murali, P.; Krishnaswamy, D.; Kalyanaraman, S.: Coupling a small battery with a datacenter for frequency regulation. (2018). https://doi.org/10.1109/PESGM.2017.8274094

  22. Avendano-Mora, M.; Camm, E.H.: Financial assessment of battery energy storage systems for frequency regulation service. In: 2015 IEEE Power Energy Society General Meeting (2015). https://doi.org/10.1109/PESGM.2015.7286504

  23. Cheng, M.; Sami, S.S.; Wu, J.: Virtual energy storage system for smart grids. 88, 436–442 (2016). https://doi.org/10.1016/j.egypro.2016.06.021

  24. Kim, Y.; Raghunathan, V.; Raghunathan, A.: Design and management of battery-supercapacitor hybrid electrical energy storage systems for regulation services. IEEE Trans. Multi-Scale Comput. Syst. 3(1), 12–24 (2017). https://doi.org/10.1109/TMSCS.2016.2627543

    Article  Google Scholar 

  25. Lucas, A.; Chondrogiannis, S.: Smart grid energy storage controller for frequency regulation and peak shaving, using a vanadium redox flow battery. Int. J. Electr. Power Energy Syst. 80, 26–36 (2016). https://doi.org/10.1016/j.ijepes.2016.01.025

    Article  Google Scholar 

  26. Morstyn, T.; Hredzak, B.; Agelidis, V.G.: Distributed cooperative control of microgrid storage. IEEE Trans. Power Syst. 30(5), 2780–2789 (2015). https://doi.org/10.1109/TPWRS.2014.2363874

    Article  Google Scholar 

  27. Wang, R., et al.: A coordination control strategy of battery and virtual energy storage to smooth the micro-grid tie-line power fluctuations. Zhongguo Dianji Gongcheng XuebaoProceedings Chin Soc. Electr. Eng. 35(20), 5124–5134 (2015). https://doi.org/10.13334/j.0258-8013.pcsee.2015.20.002

    Article  Google Scholar 

  28. Wu, J.; Hung, W.; Ekanayake, J.; Jenkins, N.; Coleman, T.; Cheng, M.: Primary frequency response in the great britain power system from dynamically controlled refrigerators. In: 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Stockholm, Sweden, pp. 0507–0507 (2013). https://doi.org/10.1049/cp.2013.0772

  29. Short, J.A.; Infield, D.G.; Freris, L.L.: Stabilization of grid frequency through dynamic demand control. IEEE Trans. Power Syst. 22(3), 1284–1293 (2007). https://doi.org/10.1109/TPWRS.2007.901489

    Article  Google Scholar 

  30. Cheng, M., et al.: Power system frequency response from the control of bitumen tanks. IEEE Trans. Power Syst. 31(3), 1769–1778 (2016). https://doi.org/10.1109/TPWRS.2015.2440336

    Article  Google Scholar 

  31. Elamari, K.; Lopes, L.A.C.; Tonkoski, R.; Using electric water heaters (EWHs) for power balancing and frequency control in PV-diesel hybrid mini-grids, pp. 842–850 (2011). https://doi.org/10.3384/ecp11057842

  32. Tokudome, M.; Tanaka, K.; Senjyu, T.; Yona, A.; Funabashi, T.; Kim, C.-H.: Frequency and voltage control of small power systems by decentralized controllable loads. In: 2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei, Taiwan, pp. 666–671 (2009). https://doi.org/10.1109/PEDS.2009.5385834

  33. Cheng, M.; Wu, J.; Galsworthy, S.; Jenkins, N.; Hung, W.: Availability of load to provide frequency response in the great Britain power system. In: 2014 Power Systems Computation Conference, pp. 1–7 (2014). https://doi.org/10.1109/PSCC.2014.7038294

  34. Yao, Y.; Zhang, P.; Wang, Y.: A two-layer control method for thermostatically controlled loads to provide fast frequency regulation. Zhongguo Dianji Gongcheng XuebaoProceedings Chin Soc. Electr. Eng. 38(17), 4987–4998 (2018). https://doi.org/10.13334/j.0258-8013.pcsee.171181

    Article  Google Scholar 

  35. Yan, S.; Wang, M.-H.; Yang, T.-B.; Hui, S.Y.R.: Instantaneous frequency regulation of microgrids via power shedding of smart load and power limiting of renewable generation. Presented at the ECCE 2016—IEEE Energy Conversion Congress and Exposition, Proceedings (2016). https://doi.org/10.1109/ECCE.2016.7855207

  36. Pourmousavi, S.A.; Nehrir, M.H.: Real-time central demand response for primary frequency regulation in microgrids. IEEE Trans. Smart Grid 3(4), 1988–1996 (2012). https://doi.org/10.1109/TSG.2012.2201964

    Article  Google Scholar 

  37. Bharti, K.; Singh, V.P.; Singh, S.P.: Impact of intelligent demand response for load frequency control in smart grid perspective. IETE J. Res. (2020). https://doi.org/10.1080/03772063.2019.1709570

    Article  Google Scholar 

  38. Jiang, I.; Ju, P.; Wang, C.; Li, H.; Liu, J.: Coordinated control of air-conditioning loads for system frequency regulation. IEEE Trans. Smart Grid, pp. 1–1 (2020). https://doi.org/10.1109/TSG.2020.3022010

  39. Mendieta, W.; Cañizares, C.A.: Primary frequency control in isolated microgrids using thermostatically controllable loads. IEEE Trans. Smart Grid, pp. 1–1 (2020). https://doi.org/10.1109/TSG.2020.3012549

  40. Liu, H.; Hu, Z.; Song, Y.; Wang, J.; Xie, X.: Vehicle-to-grid control for supplementary frequency regulation considering charging demands. IEEE Trans. Power Syst. 30(6), 3110–3119 (2015). https://doi.org/10.1109/TPWRS.2014.2382979

    Article  Google Scholar 

  41. Malik, A.; Ravishankar, J.: A review of demand response techniques in smart grids. Presented at the 2016 IEEE Electrical Power and Energy Conference, EPEC 2016 (2016). https://doi.org/10.1109/EPEC.2016.7771745

  42. Thornton, M.; Motalleb, M.; Smidt, H.; Branigan, J.; Siano, P.; Ghorbani, R.: Internet-of-things hardware-in-the-loop simulation architecture for providing frequency regulation with demand response. IEEE Trans. Ind. Inform. 14(11), 5020–5028 (2018). https://doi.org/10.1109/TII.2017.2782885

    Article  Google Scholar 

  43. Obaid, Z.A.; Cipcigan, L.M.; Abrahim, L.; Muhssin, M.T.: Frequency control of future power systems: reviewing and evaluating challenges and new control methods. J. Mod. Power Syst. Clean Energy (2018). https://doi.org/10.1007/s40565-018-0441-1

    Article  Google Scholar 

  44. Saadat, H.: Power Systems Analysis, 3rd edn. McGraw-Hill, New York (2010)

    Google Scholar 

  45. Balan, R.; Donca, R.; Balan, A.; Ple, A.: Thermal modelling and temperature control of a house. Romanian Rev. Precis. Mech. Opt. Mechatron. 39, 4 (2011)

    Google Scholar 

  46. Källblad, K.: Thermal models of buildings. lund Inst. Technol. 80 (1998)

  47. Thavlov, A.; Bindner, H.W.: Thermal Models for Intelligent Heating of Buildings. Proc. Int. Conf. Appl. Energy ICAE, p. 11 (2012)

  48. M. Donnelly, D.J.; Trudnowski, S. M., Dagle, J.E.: Autonomous demand response for primary frequency regulation. PNNL-21152, 1118120 (2012). https://doi.org/10.2172/1118120

  49. Zeinali, M.; Thompson, J.S.: Practical evaluation of UK internet network characteristics for demand-side response applications. In: 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 1–6 (2018). https://doi.org/10.1109/SmartGridComm.2018.8587541

Download references

Acknowledgments

The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals through the Direct Funded Project No. DF191004. Dr. Abido would also like to acknowledge the funding support provided by K.A. CARE Energy Research and Innovation Center (ERIC), KFUPM. The authors also acknowledge Qassim University for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. Alotaibi.

Appendix

Appendix

1.1 Key Parameters of the Power System Model

See Table 4.

Table 4 Power system data

1.2 Closed Loop Uncontrolled Matrix

figure a
$$x\times \left({s}^{3}+7.08{s}^{2}+10.56s+20.8\right)=\Delta {P}_{\mathrm{Loss}}$$
(13)
$$\left[\begin{array}{c}\dot{{x}_{1}}\\ \dot{{x}_{2}}\\ \dot{{x}_{3}}\end{array}\right]=\left[\begin{array}{ccc}0& 1& 0\\ 0& 0& 1\\ -20.8& -10.56& -7.08\end{array}\right]\left[{x}_{i}\right]$$

1.3 Closed Loop Matrix with Lead-Lag Controller

$$\frac{\Delta \omega }{\Delta P}=\frac{{K}_{2}\left(\frac{1+s{T}_{1}}{1+s{T}_{2}}\right)+\left(\frac{1}{10s+0.8}\right)}{{K}_{1}\left(\frac{1}{1+0.2s}\right)\left(\frac{1}{1+0.5s}\right)\left(\frac{1}{10s+0.8}\right)\left(\frac{1+s{T}_{1}}{1+s{T}_{2}}\right){K}_{2}+1}$$
(14)
$$x[0.8+{K}_{1}{K}_{2}+s\left(10.56+0.8{T}_{2}+{K}_{1}{K}_{2}{T}_{1}\right)+{s}^{2}\left(7.08+10.56{T}_{2}\right)+{s}^{3}\left(7.08{T}_{2}+1\right) +{s}^{4}{T}_{2}]=\Delta {P}_{Loss}$$
(15)
$$\left[\begin{array}{c}\begin{array}{c}\dot{{x}_{1}}\\ \dot{{x}_{2}}\\ \dot{{x}_{3}}\end{array}\\ \dot{{x}_{4}}\end{array}\right]=\left[\begin{array}{cccc}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ \frac{-\left(0.8+{K}_{1}{K}_{2}\right)}{{T}_{2}}& \frac{-\left(10.56+0.8{T}_{2}+{K}_{1}{K}_{2}{T}_{1}\right)}{{T}_{2}}& \frac{-\left(7.08+10.56{T}_{2}\right)}{T2}& \frac{-\left(7.08{T}_{2}+1\right)}{{T}_{2}}\end{array}\right]$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, I.M., Abido, M.A. & Khalid, M. Primary Frequency Regulation by Demand Side Response. Arab J Sci Eng 46, 9627–9637 (2021). https://doi.org/10.1007/s13369-021-05440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05440-x

Keywords

Navigation