Skip to main content
Log in

Local Neighbourhood Edge Responsive Image Descriptor for Texture Classification Using Gaussian Mutated JAYA Optimization Algorithm

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Local feature descriptor plays a significant role in texture classification. However, in the traditional local binary pattern method, image pixels are converted into a binary pattern based on the relationship between center and neighborhood pixels. This paper introduces a novel feature extraction method named local neighbourhood edge responsive binary pattern to extract and categorize reliable texture features from images for achieving an automated classification of different types of ocean bottom sediments. Initially, the basic magnitude variance pixel values are derived depending on an odd and even pixel value of a 3 × 3 image patch. Further, the edge information is extracted using the local directional pattern method from all images. The edge response of the image is obtained using a kirsch mask in all eight directions. The encoding condition is then applied to both the local intensity and the edge information to create a unique descriptor value. Finally, a new learning algorithm called GMJAYA-ELM combines the Gaussian mutated JAYA (GMJAYA) with an extreme learning machine (ELM) for texture classification. The GMJAYA is used to optimize the input weights and hidden biases of single-hidden-layer feed-forward neural networks. Experimental findings indicate that the suggested method yields better accuracy and sensitivity efficiency among various groups. The proposed algorithm is tested by contrasting outcomes with standard learning schemes such as PSO-ELM, GA-ELM, ABC-ELM, Birdswarm-ELM, and JAYA-ELM, suggesting the dominance of GMJAYA-ELM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tan, Y.; Tan, J.K.; Kim, H.; Ishikawa, S.: Classifying seabed sediments using the local auto-correlation features. Biomed. Soft Comput. Hum. Sci. 19(3), 43–50 (1995)

    Google Scholar 

  2. Zheng, H.B.; Yan, P.; Chen, J.; The discussion of acoustic seabed sediment classification methods. In: Zhang, C., Lin, PP (eds.) Applied Mechanics and Materials, vol. 226, pp. 1811–1816. Trans Tech Publications Ltd. (2012)

  3. Tang, Q.; Lei, N.; Li, J.; Wu, Y.; Zhou, X.: Seabed mixed sediment classification with multi-beam echo sounder backscatter data in Jiaozhou Bay. Mar. Georesour. Geotechnol. 33(1), 1–11 (2015)

    Article  Google Scholar 

  4. Zhu, H.; Xu, Y.; Cheng, Y.; Liu, H.; Zhao, Y.: Landform classification based on optimal texture feature extraction from DEM data in Shandong Hilly Area, China. Front. Earth Sci. 13(3), 641–655 (2019)

    Article  Google Scholar 

  5. Wang, N.; Wang, Y.; Liu, H.; Zuo, Q.; He, J.: Feature-fused SAR target discrimination using multiple convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 14(10), 1695–1699 (2017)

    Article  Google Scholar 

  6. Lianantonakis, M.; Petillot, Y.R.: Sidescan sonar segmentation using texture descriptors and active contours. IEEE J. Ocean. Eng. 32(3), 744–752 (2007)

    Article  Google Scholar 

  7. Li, Y.; Liu, S.; Zhu, P.; Yu, J.; Li, S.: Extraction of visual texture features of seabed sediments using an SVDD approach. Ocean. Eng. 142, 501–506 (2017)

    Article  Google Scholar 

  8. Heikkilä, M.; Pietikäinen, M.; Schmid, C.: Description of interest regions with local binary patterns. Pattern recognition 42(3), 425-436 (2009)

    Chapter  Google Scholar 

  9. Chahi, A.; Ruichek, Y.; Touahni, R.: Local directional ternary pattern: a new texture descriptor for texture classification. Comput. Vis. Image Underst. 169, 14–27 (2018)

    Article  Google Scholar 

  10. Liu, J.; Chen, Y.; Sun, S.: A novel local texture feature extraction method is called a multi-direction local binary pattern. Multimedia Tools Appl. 78(13), 18735–18750 (2019)

    Article  Google Scholar 

  11. Galshetwar, G.M.; Waghmare, L.M.; Gonde, A.B.; Murala, S.: Multi-dimensional multi-directional mask maximum edge pattern for biomedical image retrieval. Int. J. Multimedia Inf. Retr. 7(4), 231–239 (2018)

    Article  Google Scholar 

  12. Zeng, H.; Wang, X.; Gu, Y.: Center symmetric local multilevel pattern-based descriptor and its application in image matching. Int. J. Opt. 2016, 1–9 (2016)

    Article  Google Scholar 

  13. Eshtay, M.; Faris, H.; Obeid, N.: Metaheuristic-based extreme learning machines: a review of design formulations and applications. Int. J. Mach. Learn. Cybern. 10(6), 1543–1561 (2019)

    Article  Google Scholar 

  14. Reddy, A.V.; Krishna, C.P.; Mallick, P.K.: An image classification framework exploring the capabilities of extreme learning machines and artificial bee colony. Neural Comput. Appl. 32, 3079–3099 (2019)

    Google Scholar 

  15. Eshtay, M.; Faris, H.; Obeid, N.: A competitive swarm optimizer with hybrid encoding for simultaneously optimizing the weights and structure of Extreme Learning Machines for classification problems. Int. J. Mach. Learn. Cybern. 11, 1801–1823 (2020)

    Article  Google Scholar 

  16. Nayak, D.R.; Dash, R.; Majhi, B.: An improved pathological brain detection system based on two-dimensional PCA and evolutionary extreme learning machine. J. Med. Syst. 42(1), 19 (2018)

    Article  Google Scholar 

  17. Youcefi, M.R.; Hadjadj, A.; Bentriou, A.; Boukredera, F.S.: Rate of penetration modeling using hybridization extreme learning machine and whale optimization algorithm. Earth Sci. Inf. 13, 1351–1368 (2020)

    Article  Google Scholar 

  18. Shihavuddin, ASM (2017) Coral reef dataset, Mendeley Data, V2. https://doi.org/10.17632/86y667257h.2

  19. Loya, Y.: The coral reefs of Eilat—past, present and future: three decades of coral community structure studies. In: Rosenberg, E., Loya, Y (eds.) Coral Health and Disease, pp 1–34, Springer (2004)

  20. Beijbom, O.; Edmunds, P.J.; Kline, D.I.; Mitchell, B.G.; Kriegman, D.: Automated annotation of coral reef survey images. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1170– 1177. IEEE (2012)

  21. NOAA: https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/Geology/iso/xml/10163.xml&view=getDataView&header=none.

  22. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications, New York (1966)

    Google Scholar 

  23. Safia, A.; He, D. : New brodatz-based image databases for grayscale colorand multibandtexture analysis. Vol. 2013, ISRN MachineVision (2013)

  24. Ojala, T.; Pietikäinen, M.; Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  25. Guo, Z.; Zhang, L.; Zhang, D.: Completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  26. Heikkilä, M.; Pietikäinen, M.; Schmid, C.: Description of interest regions with center-symmetric local binary patterns. In: Kalra, P.K., Peleg, S (eds.) Computer Vision, Graphics and Image Processing, pp. 58–69. Springer, Berlin (2006)

  27. Silva, C.; Bouwmans, T.; Frélicot, C.: An extended center-symmetric local binary pattern for background modeling and subtraction in videos. In: International Joint Conference on Computer Vision in Imaging and Computer Graphics Theory and Applications, VLSAPP (2015)

  28. Petpon, A.; Srisuk, S.: Face recognition with local line binary pattern. In: 2009 Fifth International Conference on Image and Graphics, pp. 533–539. IEEE (2009)

  29. Jabid, T.; Kabir, M.H.; Chae, O.: Robust facial expression recognition based on the local directional pattern. ETRI J. 32(5), 784–794 (2010)

    Article  Google Scholar 

  30. Chakraborti, T.; McCane, B.; Mills, S.; Pal, U.: Loop descriptor: local optimal-oriented pattern. IEEE Signal Process. Lett. 25(5), 635–639 (2018)

    Article  Google Scholar 

  31. Dubey, S.R.; Singh, S.K.; Singh, R.K.: Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process. Lett. 22(9), 1215–1219 (2015)

    Article  Google Scholar 

  32. Verma, M.; Raman, B.: Local neighborhood difference pattern: a new feature descriptor for natural and texture image retrieval. Multimedia Tools Appl. 77(10), 11843–11866 (2018)

    Article  Google Scholar 

  33. Huang, G.B.; Zhu, Q.Y.; Siew, C.K.: Extreme learning machine: a new learning scheme of feed-forward neural networks. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541, vol. 2, pp. 985–990. IEEE (2004)

  34. Han, F.; Yao, H.F.; Ling, Q.H.: An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 116, 87–93 (2013)

    Article  Google Scholar 

  35. Rao, R.V.; Rai, D.P.; Balic, J.: A multi-objective algorithm for optimization of modern machining processes. Eng. Appl. Artif. Intell. 61, 103–125 (2017)

    Article  Google Scholar 

  36. Michailidis, P.D.: An efficient multi-core implementation of the Jaya optimization algorithm. Int. J. Parallel Emergent Distrib. Syst. 34(3), 288–320 (2019)

    Article  Google Scholar 

  37. Huang, G.B.; Zhu, Q.Y.; Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  38. Das, S.R.; Mishra, D.; Rout, M.: A hybridized ELM using a self-adaptive multi-population-based Jaya algorithm for currency exchange prediction: an empirical assessment. Neural Comput. Appl. 31(11), 7071–7094 (2019)

    Article  Google Scholar 

  39. Ma, C.: An efficient optimization method for extreme learning machine using artificial bee colony. J. Digit. Inf. Manag. 15(3), 135–147 (2017)

    Google Scholar 

  40. Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2011)

    Article  Google Scholar 

  41. Aljarah, I.; Faris, H.; Mirjalili, S.; Al-Madi, N.; Sheta, A.; Mafarja, M.: Evolving neural networks using bird swarm algorithm for data classification and regression applications. Clust. Comput. 22(4), 1317–1345 (2019)

    Article  Google Scholar 

  42. Nayak, D.R.; Zhang, Y.; Das, D.S.; Panda, S.: MJaya-ELM: A Jaya algorithm with mutation and extreme learning machine-based approach for sensorineural hearing loss detection. Appl. Soft Comput. 83, 105626 (2019)

    Article  Google Scholar 

  43. Awadallah, M.A.; Al-Betar, M.A.; Hammouri, A.I.; Alomari, O.A.: Binary JAYA algorithm with adaptive mutation for feature selection. Arab. J. Sci. Eng. 45, 10875–10890 (2020)

    Article  Google Scholar 

  44. Thirumoorthy, K.; Muneeswaran, K.: Optimal feature subset selection using a hybrid binary Jaya optimization algorithm for text classification. Sādhanā 45(1), 1–13 (2020)

    Article  Google Scholar 

  45. Das, D.; Nayak, D.R.; Dash, R.; Majhi, B.: MJCN: Multi-objective Jaya Convolutional Network for handwritten optical character recognition. Multimedia Tools Appl. 79, 33023–33042 (2020)

    Article  Google Scholar 

  46. Baliarsingh, S.K.; Vipsita, S.; Dash, B.: A new optimal gene selection approach for cancer classification using enhanced Jaya-based forest optimization algorithm. Neural Comput. Appl. 32(12), 8599–8616 (2020)

    Article  Google Scholar 

  47. Das, S.R.; Mishra, D.; Rout, M.: A hybridized ELM-Jaya forecasting model for currency exchange prediction. J. King Saud Univ.-Comput. Inf. Sci. 32(3), 345–366 (2020)

    Google Scholar 

  48. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)

    Article  MathSciNet  Google Scholar 

  49. Das, H.; Naik, B.; Behera, H.S.: A Jaya algorithm based wrapper method for optimal feature selection in supervised classification. J. King Saud Univ.-Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.05.002

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Professor Dr. P. Ramasamy, Dean Research for his constant support in establishment and various research activities in Underwater Acoustic Research Lab, Department of Electronics and Communications Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakthivel Murugan Santhanam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, A., Santhanam, S.M. Local Neighbourhood Edge Responsive Image Descriptor for Texture Classification Using Gaussian Mutated JAYA Optimization Algorithm. Arab J Sci Eng 46, 8151–8170 (2021). https://doi.org/10.1007/s13369-021-05417-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05417-w

Keywords

Navigation