Skip to main content

Advertisement

Log in

Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The classification of Alzheimer’s disease (AD) using ADNI dataset requires suitable feature segmenting techniques to detect the existing and relevant finer smaller brain region features, together with effective classification model, to eliminate a massive, labor-intensive and time-consuming voxel-based morphometry technique. Here, in this paper, a deep learning-based segmenting method using SegNet to detect AD pertinent brain parts features from structural magnetic resonance imaging (sMRI) and subsequently classifying accurately AD and dementia condition using ResNet-101 is presented. A deep learning-based image segmenting approach is experimented in detecting the delicate features of brain morphological changes due to AD that benefits classification performance for cognitive normal, mild cognitive impairment and AD, and thus provides an easy automatic diagnosis of Alzheimer’s diseases. For classification, ResNet-101 is trained applying features extracted from SegNet with ADNI dataset. This paper demonstrated particularly to attain top-level automated classification. The seven morphological features like grey matter, white matter, cortex surface, gyri and sulci contour, cortex thickness, hippocampus and cerebrospinal fluid space extracted from 240 sMRI with SegNet are used to train ResNet for classification, and this classifier achieved a sensitivity of 96% and an accuracy of 95% over 240 ADNI sMRI other than used for training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Braak, H.; Braak, E.; Bohl, J.; Bratzke, H.: Evolution of Alzheimer’s disease related cortical lesions. In: Gertz, H.-J., Arendt, Th (eds.) Alzheimer’s Disease-from Basic Research to Clinical Applications, pp. 97–106. Springer, Vienna (1998)

    Chapter  Google Scholar 

  2. Bain, L.J.; Jedrziewski, K.; Morrison-Bogorad, M.; Albert, M.; Cotman, C.; Hendrie, H.; et al.: Healthy brain aging: a meeting report from the Sylvan M. Cohen Annual Retreat of the University of Pennsylvania Institute on Aging. Alzheimer’s Dement. 4, 443–446 (2008)

    Article  Google Scholar 

  3. Alzheimer’s Association: 2016 Alzheimer’s disease facts and figures, Alzheimer’s and Dementia, 12(4), pp. 459–509 (2016)

  4. Wattmo, C.; Londos, E.; Minthon, L.: Risk factors that affect life expectancy in Alzheimer’s disease: a 15-year follow-up. Dement. Geriatr. Cogn. Disord. 38, 286–299 (2014)

    Article  Google Scholar 

  5. Dubois, B.; Feldman, H.H.; Jacova, C.; DeKosky, S.T.; Barberger-Gateau, P.; Cummings, J.; et al.: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734–746 (2007)

    Article  Google Scholar 

  6. Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; et al.: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 270–279 (2011)

    Article  Google Scholar 

  7. Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L.: Mild cognitive impairment: a concept in evolution. J. Int. Med. 275, 214–228 (2014)

    Article  Google Scholar 

  8. Artero, S.; Petersen, R.; Touchon, J.; Ritchie, K.: Revised criteria for mild cognitive impairment: validation within a longitudinal population study. Dement. Geriatr. Cogn. Disord. 22, 465–470 (2006)

    Article  Google Scholar 

  9. Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Int. Med. 256, 183–194 (2004)

    Article  Google Scholar 

  10. Wee, C.-Y.; Yap, P.-T.; Shen, D.; For the Alzheimer’s disease Neuroimaging Initiative: Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Human Brain Mapping. 34, 3411–3425 (2013)

  11. Cuingnet, R.; Gerardin, E.; Tessieras, J.; Auzias, G.; Leheéricy, S.; Habert, M.-O.; et al.: Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. NeuroImage. 56, 766–781 (2011)

    Article  Google Scholar 

  12. Hanyu, H.; Sato, T.; Hirao, K.; Kanetaka, H.; Iwamoto, T.; Koizumi, K.: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer’s disease: a longitudinal SPECT study. J. Neurol. Sci. 290(1–2), 96–101 (2010)

    Article  Google Scholar 

  13. Gray, K.R.; Wolz, R.; Heckemann, R.A.; Aljabar, P.; Hammers, A.; Rueckert, D.: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease. NeuroImage 60(1), 221–229 (2012)

    Article  Google Scholar 

  14. Liu, F.; Zhou, L.; Shen, C.; Yin, J.: Multiple kernel learning in the primal for multi-modal Alzheimer’s disease classification. IEEE J. Biomed. Health Inform. 18(3), 984–990 (2014)

    Article  Google Scholar 

  15. Zhang, D.; Wang, Y.; Zhou, L.; Yuan, H.; Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)

    Article  Google Scholar 

  16. Papakostas, G.A.; Savio, A.; Graña, M.; Kaburlasos, V.G.: A lattice computing approach to Alzheimer’s disease computer assisted diagnosis based on MRI data. Neurocomputing 150, 37–42 (2015)

    Article  Google Scholar 

  17. Beheshti, I.; Demirel, H.: Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease. Comput. Biol. Med. 64, 208–216 (2015)

    Article  Google Scholar 

  18. Moradi, E.; Pepe, A.; Gaser, C.; Huttunen, H.; Tohka, J.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage 104, 398–412 (2015)

    Article  Google Scholar 

  19. Bron, E.E.; Smits, M.; Vrenken, H.; Barkhof, F.; Scheltens, P.: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CAD dementia challenge. NeuroImage 111, 562–579 (2015)

    Article  Google Scholar 

  20. Zhang, Y.; Dong, Z.; Phillips, P.; et al.: Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 9, 66 (2015)

    Google Scholar 

  21. Andersen, A.H.; Rayens, W.S.; Liu, Y.; Smith, C.D.: Partial least squares for discrimination in fMRI data. Magn. Reson. Imaging 30(3), 446–452 (2012)

    Article  Google Scholar 

  22. Mesrob, L.: DTI and structural MRI classification in Alzheimer’s disease. Adv. Mol. Imag. 02, 12–20 (2012)

    Article  Google Scholar 

  23. Lee, W.; Park, B.; Han, K.: Classification of diffusion tensor images for the early detection of Alzheimer’s disease. Comput. Biol. Med. 43(10), 1313–1320 (2013)

    Article  Google Scholar 

  24. Diamantaras, K.I.; Kung, S.Y.: Principal Component Neural Networks. Wiley, New York (1996)

    MATH  Google Scholar 

  25. Barnes, J.; Bartlett, J.W.; van de Pol, L.A.; et al.: A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol. Aging 30(11), 1711–1723 (2009)

    Article  Google Scholar 

  26. Magnin, B.; Mesrob, L.; Kinkingnéhun, S.; et al.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Diagnost. Neuroradiol. 51(2), 73–83 (2009)

    Article  Google Scholar 

  27. Fjell, A.M.; Walhovd, K.B.; Fennema-Notestine, C.; et al.: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J. Neurosci. 30(6), 2088–2101 (2010)

    Article  Google Scholar 

  28. Liu, S.; Liu, S.; Cai, W.; et al.: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62(4), 1132–1140 (2015)

    Article  Google Scholar 

  29. Liu, S.; Liu, S.; Cai, W.; Pujol, S.; Kikinis, R.; Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: Proceedings/IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1015–1018 (2014)

  30. Li, F.; Tran, L.; Thung, K.H.; Ji, S.; Shen, D.; Li, J.: A robust deep model for improved classification of AD/MCI patients. IEEE J. Biomed. Health Inform. 19(5), 1610–1616 (2015)

    Article  Google Scholar 

  31. Ye, J.; Wu, T.; Li, J.; Chen, K.: Machine learning approaches for the neuroimaging study of Alzheimer’s disease. IEEE Comput. 4(4), 99–101 (2011)

    Google Scholar 

  32. Rama, R. K.; Park, H. C.; Lee, S.-W.: Sparse feature selection using import vector machines for classification of Alzheimer’s disease. In: Proceedings of 2016 King Fall Conference (2016)

  33. Zhu, X.; Suk, H.; Wang, L.; Lee, S.W.; Shena, D.: Alzheimer’s Disease Neuroimaging Initiative A Novel Relational Regularization Feature Selection Method for Joint Regression and Classification in AD Diagnosis, Medical Image Analysis. Elseiver, Amsterdam (2015)

    Google Scholar 

  34. Xu, L.; Wu, X.; Li, R.; Chen, K.; Long, Z.; Zhang, J.; et al.: Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers. J. Alzheimer’s Dis. 51, 1045–1056 (2016)

    Article  Google Scholar 

  35. Gönen, M.; Alpaydin, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Wu, X.; Li, Q.; Xu, L.; Chen, K.; Yao, L.: Multi-feature kernel discriminant dictionary learning for face recognition. Pattern Recogn. 66, 404–411 (2017)

    Article  Google Scholar 

  37. Vieira, S.; Pinaya, W.H.; Mechelli, A.: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders. Methods and applications. Neurosci. Biobehav. Rev. 74, 58–75 (2017)

    Article  Google Scholar 

  38. He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770-778 (2016)

  39. Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv: 1409.1556 (2014)

  40. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.C.; Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  41. Long, J.; Shelhamer, E.; Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

  42. Liang-Chieh, C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)

  43. Ioffe, S.; Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, arXiv:1502.03167 (2015)

  44. Badrinarayanan, V.; Kendall, A.; Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for scene segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  45. Zhang, A.; Lipton, Z.C. ; Li, M.; Smola, A.J.: Dive into Deep Learning Release 0.7.1. https://d2l.ai/d2l-en.pdf (2020)

  46. Wu, H.; Xin, M.; Fang, W.; Hu, H.M.; Hu, Z.: Multi-level feature network with multi-loss for person re-identification. IEEE Access (2015)

  47. Schaer, M.; Cuadra, M.B.; Schmansky, N.; Fischl, B.; Thiran, J.P.; Eliez, S.: How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index. J. Vis. Exp. 59, e3417 (2012)

    Google Scholar 

  48. Lu, D.; Popuri, K.; Ding, W.; Balachandar, R.; Faisal, M.: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MRI and FDG-pPET images. Sci. Rep 8, 1–13 (2018)

    Google Scholar 

  49. Lian, C.; Liu, M.; Zhang, J.; Shen, D.: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 42, 880–893 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The sMRI dataset was collected from Alzheimer’s Disease Neuroimaging Initiative (ADNI) http://adni.loni.usc.edu/data-samples/access-data/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Buvaneswari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buvaneswari, P.R., Gayathri, R. Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease. Arab J Sci Eng 46, 5373–5383 (2021). https://doi.org/10.1007/s13369-020-05193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05193-z

Keywords

Navigation