Skip to main content
Log in

Detecting Rumors on Social Media Based on a CNN Deep Learning Technique

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Currently, it is easy to create content and share it via social media platforms such as Twitter, Facebook, and Sina Weibo. However, some problems can occur when the shared content includes untrustworthy or misleading information. Thus, researchers from different domains have tried to investigate the impact of rumors on the global community. Several machine learning approaches have been used to detect rumors at their early stage. However, the achieved accuracies demonstrate that the existing state-of-the-art rumor detection approaches still require improvement. In this paper, we propose a deep learning model based on a conventional neural network (CNN) to detect rumors spreading on Twitter. Several experiments were conducted to find the best hyperparameter settings to improve the model’s performance. We compared our results with other relevant rumor detection approaches that used the same publicly available benchmark dataset to demonstrate our model’s performance regarding the accuracy, precision, recall and f-measure. The results show that our CNN model outperforms all the existing approaches and achieves the best balance of recall and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.twittermonitor.net/.

  2. https://www.cs.waikato.ac.nz/ml/weka/downloading.html.

  3. https://figshare.com/articles/PHEME_dataset_of_rumo-urs_and_nonrumours/4010619.

References

  1. Zhang, Q.; Zhang, S.; Dong, J.; Xiong, J.; Cheng, X.: Automatic detection of rumor on social network. In: Li, J., Ji, H., Zhao, D., Feng, Y. (eds.) Natural Language Processing and Chinese Computing, pp. 113–122. Springer, Cham (2015)

    Chapter  Google Scholar 

  2. Zubiaga, A.; Liakata, M.; Procter, R.: Exploiting context for rumour detection in social media. In: Ciampaglia, G.L., Mashhadi, A., Yasseri, T. (eds.) Social Informatics, pp. 109–123. Springer, Cham (2017)

    Chapter  Google Scholar 

  3. Cao, J.; Guo, J.; Li, X.; Jin, Z.; Guo, H.; Li, J.: Automatic rumor detection on microblogs: a survey (2018). CoRR abs/1807.03505. arxiv:1807.03505

  4. Castillo, C.; Mendoza, M.; Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pp. 675–684. ACM, New York (2011). https://doi.org/10.1145/1963405.1963500

  5. Hamidian, M.T.; Sardar, D.I.A.B.: Rumor detection and classification for twitter data. In: Proceedings of the Fifth International Conference on Social Media Technologies, Communication, and Informatics (SOTICS), vol. 4, pp. 71–77. IARIA XPS Press (2015)

  6. Vijeev, A.; Mahapatra, A.; Shyamkrishna, A.; Murthy, S.: A hybrid approach to rumour detection in microblogging platforms. In: 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 337–342 (2018). https://doi.org/10.1109/ICACCI.2018.8554371

  7. Ajao, O.; Bhowmik, D.; Zargari, S.: Fake news identification on twitter with hybrid CNN and RNN models. In: Proceedings of the 9th International Conference on Social Media and Society, SMSociety ’18, pp. 226–230. ACM, New York (2018). https://doi.org/10.1145/3217804.3217917

  8. Alkhodair, S.A.; Ding, S.H.; Fung, B.C.; Liu, J.: Detecting breaking news rumors of emerging topics in social media. Inform. Process. Manag. (2019). https://doi.org/10.1016/j.ipm.2019.02.016

    Article  Google Scholar 

  9. Ma, J.; Gao, W.; Mitra, P.; Kwon, S.; Jansen, B.J.; Wong, K.F.; Cha, M.: Detecting rumors from microblogs with recurrent neural networks. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16, pp. 3818–3824. AAAI Press (2016). http://dl.acm.org/citation.cfm?id=3061053.3061153

  10. Yu, F.; Liu, Q.; Wu, S.; Wang, L.; Tan, T.: A convolutional approach for misinformation identification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, pp. 3901–3907. AAAI Press (2017). http://dl.acm.org/citation.cfm?id=3172077.3172434

  11. Nguyen, T.N.; Li, C.; Niederée, C.: On early-stage debunking rumors on twitter: leveraging the wisdom of weak learners. In: Ciampaglia, G.L., Mashhadi, A., Yasseri, T. (eds.) Social Informatics, pp. 141–158. Springer, Cham (2017)

    Chapter  Google Scholar 

  12. Jin, Z.; Cao, J.; Guo, H.; Zhang, Y.; Luo, J.: Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In: Proceedings of the 25th ACM International Conference on Multimedia, MM ’17, pp. 795–816. ACM, New York (2017). https://doi.org/10.1145/3123266.3123454

  13. Guo, H.; Cao, J.; Zhang, Y.; Guo, J.; Li, J.: Rumor detection with hierarchical social attention network. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18, pp. 943–951. ACM, New York (2018). https://doi.org/10.1145/3269206.3271709

  14. Zubiaga, A.; Aker, A.; Bontcheva, K.; Liakata, M.; Procter, R.: Detection and resolution of rumours in social media: a survey. ACM Comput. Surv. 51(2), 32:1–32:36 (2018). https://doi.org/10.1145/3161603

    Article  Google Scholar 

  15. Yang, F.; Liu, Y.; Yu, X.; Yang, M.: Automatic detection of rumor on sina weibo. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS ’12, pp. 13:1–13:7. ACM, New York (2012). https://doi.org/10.1145/2350190.2350203

  16. Guimarães, N.; Miranda, F.; Figueira, Á.: Human versus automatic annotation regarding the task of relevance detection in social networks. In: Barolli, L., Xhafa, F., Javaid, N., Spaho, E., Kolici, V. (eds.) Advances in Internet, Data & Web Technologies, pp. 922–933. Springer, Cham (2018)

    Chapter  Google Scholar 

  17. Kumar, A.; Sangwan, S.R.; Nayyar, A.: Rumour veracity detection on twitter using particle swarm optimized shallow classifiers. Multimed. Tools Appl. (2019). https://doi.org/10.1007/s11042-019-7398-6

    Article  Google Scholar 

  18. Qazvinian, V.; Rosengren, E.; Radev, D.R.; Mei, Q.: Rumor has it: identifying misinformation in microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Stroudsburg, PA, USA, EMNLP ’11, pp. 1589–1599 (2011). http://dl.acm.org/citation.cfm?id=2145432.2145602

  19. Takahashi, T.; Igata, N.: Rumor detection on twitter. In: The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems, pp. 452–457 (2012). https://doi.org/10.1109/SCIS-ISIS.2012.6505254

  20. Mondal, T.; Pramanik, P.; Bhattacharya, I.; Boral, N.; Ghosh, S.: Analysis and early detection of rumors in a post disaster scenario. Inf. Syst. Front. 20(5), 961–979 (2018). https://doi.org/10.1007/s10796-018-9837-8

    Article  Google Scholar 

  21. Mendoza, M.; Poblete, B.; Castillo, C.: Twitter under crisis: can we trust what we RT? In: Proceedings of the First Workshop on Social Media Analytics, SOMA ’10, pp. 71–79. ACM, New York (2010). 10.1145/1964858.1964869

  22. Sun, S.; Liu, H.; He, J.; Du, X.: Detecting event rumors on sina weibo automatically. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) Web Technologies and Applications, pp. 120–131. Springer, Berlin (2013)

    Chapter  Google Scholar 

  23. Kochkina, E.; Liakata, M.; Zubiaga, A.: All-in-one: multi-task learning for rumour verification (2018). CoRR abs/1806.03713. arxiv:1806.03713

  24. Aker, A.; Lukasik, M.; Zubiaga, A.; Bontcheva, K.; Cohn, T.: D4. 3.2 algorithms for detecting misinformation and disinformation. Final version (2016)

  25. Zhao, Z.; Resnick, P.; Mei, Q.: Enquiring minds: early detection of rumors in social media from enquiry posts. In: Proceedings of the 24th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, WWW ’15, pp. 1395–1405 (2015). https://doi.org/10.1145/2736277.2741637

  26. Kwon, S.; Cha, M.; Jung, K.; Chen, W.; Wang, Y.: Prominent features of rumor propagation in online social media. In: 2013 IEEE 13th International Conference on Data Mining, pp. 1103–1108 (2013). https://doi.org/10.1109/ICDM.2013.61

  27. Asghar, M.Z.; Habib, A.; Habib, A.; Khan, A.; Ali, R.; Khattak, A.: Exploring deep neural networks for rumor detection. J. Ambient Intell. Human. Comput. 1–19 (2019)

  28. Gao, J.; Han, S.; Song, X.; Ciravegna, F.: RP-DNN: a tweet level propagation context based deep neural networks for early rumor detection in social media. In: LREC 2020 Proceedings: The International Conference on Language Resources and Evaluation. European Language Resources Association (2020)

  29. Aker, A.; Sliwa, A.; Dalvi, F.; Bontcheva, K.: Rumour verification through recurring information and an inner-attention mechanism. Soc. Netw. Med. 13, 100045 (2019). https://doi.org/10.1016/j.osnem.2019.07.001

    Article  Google Scholar 

  30. Santhoshkumar, S.; Babu, L.D.: Earlier detection of rumors in online social networks using certainty-factor-based convolutional neural networks. Soc. Netw. Anal. Min. 10(1), 1–17 (2020)

    Article  Google Scholar 

  31. Ma, J.; Gao, W.; Wong, K.F.: Detect rumors in microblog posts using propagation structure via kernel learning. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Long Papers, vol. 1, pp. 708–717 (2017)

  32. Ma, J.; Gao, W.; Wong, K.F.: Detect rumors on twitter by promoting information campaigns with generative adversarial learning. In: The World Wide Web Conference, WWW ’19, pp. 3049–3055. ACM, New York (2019). https://doi.org/10.1145/3308558.3313741

  33. Al-Sarem, M.; Boulila, W.; Al-Harby, M.; Qadir, J.; Alsaeedi, A.: Deep learning-based rumor detection on microblogging platforms: a systematic review. IEEE Access 7, 152788–152812 (2019). https://doi.org/10.1109/ACCESS.2019.2947855

    Article  Google Scholar 

  34. Boididou, C.; Andreadou, K.; Papadopoulos, S.; Dang-Nguyen, D.T.; Boato, G.; Riegler, M.; Kompatsiaris, Y.: Verifying multimedia use at mediaeval. MediaEvil 3, 7 (2015)

    Google Scholar 

  35. Zubiaga, A.; Liakata, M.; Procter, R.: Learning reporting dynamics during breaking news for rumour detection in social media (2016a). CoRR abs/1610.07363. arxiv:1610.07363

  36. Collobert, R.; Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, ICML ’08, pp. 160–167. ACM, New York (2008). https://doi.org/10.1145/1390156.1390177

  37. Yu, L.; Hermann, K.M.; Blunsom, P.; Pulman, S.: Deep learning for answer sentence selection (2014). CoRR abs/1412.1632. arxiv:1412.1632

  38. Kim, Y.: Convolutional neural networks for sentence classification (2014). CoRR abs/1408.5882. arxiv:1408.5882

  39. Abuhamad, M.; Su Rhim, J.; AbuHmed, T.; Ullah, S.; Kang, S.; Nyang, D.: Code authorship identification using convolutional neural networks. Future Gen. Comput. Syst. 95, 104–115 (2019). https://doi.org/10.1016/j.future.2018.12.038

    Article  Google Scholar 

  40. Boumber, D.; Zhang, Y.; Mukherjee, A.: Experiments with convolutional neural networks for multi-label authorship attribution. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018) (2018)

  41. Alharthi, H.; Inkpen, D.; Szpakowicz, S.: Authorship identification for literary book recommendations. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 390–400 (2018)

  42. Hitschler, J.; van den Berg, E.; Rehbein, I.: Authorship attribution with convolutional neural networks and pos-eliding. In: Proceedings of the Workshop on Stylistic Variation, pp. 53–58 (2017)

  43. Chen, H.; Lin, Z.; Ding, G.; Lou, J.; Zhang, Y.; Karlsson, B.: GRN: Gated relation network to enhance convolutional neural network for named entity recognition. In: Proceedings of AAAI (2019)

  44. Wang, C.; Chen, W.; Xu, B.: Named entity recognition with gated convolutional neural networks. In: Sun, M., Wang, X., Chang, B., Xiong, D. (eds.) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data, pp. 110–121. Springer, Cham (2017)

    Chapter  Google Scholar 

  45. Wang, J.: Using convolutional neural networks to extract keywords and keyphrases about foodborne illnesses. Master’s thesis, School of Computer Science, University of Guelph, McLaughlin Library, University of Guelph (2019)

  46. Vandersmissen, B.; Sterckx, L.; Demeester, T.; Jalalvand, A.; De Neve, W.; Van de Walle, R.: An automated end-to-end pipeline for fine-grained video annotation using deep neural networks. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, ICMR ’16, pp. 409–412. ACM, New York (2016). https://doi.org/10.1145/2911996.2912028

  47. Apté, C.; Damerau, F.; Weiss, S.M.: Automated learning of decision rules for text categorization. ACM Trans. Inf. Syst. 12(3), 233–251 (1994). https://doi.org/10.1145/183422.183423

    Article  Google Scholar 

  48. Tzeras, K.; Hartmann, S.: Automatic indexing based on Bayesian inference networks. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’93, pp. 22–35. ACM, New York (1993). https://doi.org/10.1145/160688.160691

  49. Salton, G.; Wong, A.; Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975). https://doi.org/10.1145/361219.361220

    Article  MATH  Google Scholar 

  50. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

  51. Pennington, J.; Socher, R.; Manning, C.: Glove: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

  52. Liu, T.; Fang, S.; Zhao, Y.; Wang, P.; Zhang, J.: Implementation of training convolutional neural networks (2015). arXiv preprint arXiv:150601195

  53. Xia, W.; Zhu, W.; Liao, B.; Chen, M.; Cai, L.; Huang, L.: Novel architecture for long short-term memory used in question classification. Neurocomputing 299, 20–31 (2018). https://doi.org/10.1016/j.neucom.2018.03.020

    Article  Google Scholar 

  54. Goodfellow, I.; Bengio, Y.; Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  55. Nair, V.; Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, Omnipress, USA, ICML’10, pp. 807–814 (2010). http://dl.acm.org/citation.cfm?id=3104322.3104425

  56. Maas, A.L.; Hannun, A.Y.; Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proc. icml, vol. 30, p. 3 (2013)

  57. He, K.; Zhang, X.; Ren, S.; Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

  58. Xu, B.; Wang, N.; Chen, T.; Li, M.: Empirical evaluation of rectified activations in convolutional network (2015). arXiv preprint arXiv:150500853

  59. Clevert, D.A.; Unterthiner, T.; Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus) (2015). arXiv preprint arXiv:151107289

  60. Goodfellow, I.J.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y.: Maxout networks. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, vol. 28, JMLR.org, ICML’13, pp. III–1319–III–1327 (2013). http://dl.acm.org/citation.cfm?id=3042817.3043084

  61. Montavon, G.; Orr, G.; Müller, K.R.: Neural Networks: Tricks of the Trade, vol. 7700. Springer, Berlin (2012)

    Book  Google Scholar 

  62. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; Chen, T.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018). https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  63. Boureau, Y.L.; Ponce, J.; LeCun, Y.: A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, Omnipress, USA, ICML’10, pp. 111–118 (2010). http://dl.acm.org/citation.cfm?id=3104322.3104338

  64. Wang, T.; Wu, D.J.; Coates, A.; Ng, A.Y.: End-to-end text recognition with convolutional neural networks. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 3304–3308 (2012)

  65. Hyvärinen, A.; Köster, U.: Complex cell pooling and the statistics of natural images. Netw. Comput. Neural Syst. 18(2), 81–100 (2007)

    Article  MathSciNet  Google Scholar 

  66. Zeiler, M.D.; Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks (2013). arXiv preprint arXiv:13013557

  67. Zubiaga, A.; Liakata, M.; Procter, R.: Learning reporting dynamics during breaking news for rumour detection in social media (2016b). CoRR abs/1610.07363. arxiv:1610.07363

  68. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  69. Jaradat, S.; Matskin, M.: On Dynamic Topic Models for Mining Social Media, pp. 209–230. Springer, Cham (2019)

    Google Scholar 

  70. Jain, G.; Sharma, M.; Agarwal, B.: Spam detection in social media using convolutional and long short term memory neural network. Ann. Math. Artif. Intell. 85(1), 21–44 (2019). https://doi.org/10.1007/s10472-018-9612-z

    Article  MATH  Google Scholar 

  71. Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2(1), 1 (2015)

    Article  Google Scholar 

  72. Hou, Y.T.; Chang, Y.; Chen, T.; Laih, C.S.; Chen, C.M.: Malicious web content detection by machine learning. Expert Syst. Appl. 37(1), 55–60 (2010). https://doi.org/10.1016/j.eswa.2009.05.023

    Article  Google Scholar 

  73. Huang, H.; Qian, L.; Wang, Y.: A svm-based technique to detect phishing urls. Inf. Technol. J. 11(7), 921 (2012)

    Article  Google Scholar 

  74. Alshboul, Y.; Nepali, R.K.; Wang, Y.: Detecting malicious short urls on twitter. In: 21st Americas Conference on Information Systems, AMCIS 2015, Puerto Rico, August 13–15, 2015. Association for Information Systems (2015). http://aisel.aisnet.org/amcis2015/ISSecurity/GeneralPresentations/19

  75. Li, Y.; Yang, Z.; Chen, X.; Yuan, H.; Liu, W.: A stacking model using url and html features for phishing webpage detection. Future Gen. Comput. Syst. 94, 27–39 (2019). https://doi.org/10.1016/j.future.2018.11.004

    Article  Google Scholar 

  76. Saxe, J.; Berlin, K.: expose: A character-level convolutional neural network with embeddings for detecting malicious urls, file paths and registry keys (2017). CoRR abs/1702.08568. arxiv:1702.08568

  77. Le, H.; Pham, Q.; Sahoo, D.; Hoi, S.C.H.: Urlnet: learning a URL representation with deep learning for malicious URL detection (2018). CoRR abs/1802.03162. arxiv:1802.03162

  78. Jiang, J.; Chen, J.; Choo, K.K.R.; Liu, C.; Liu, K.; Yu, M.; Wang, Y.: A deep learning based online malicious url and dns detection scheme. In: Lin, X., Ghorbani, A., Ren, K., Zhu, S., Zhang, A. (eds.) Security and Privacy in Communication Networks, pp. 438–448. Springer, Cham (2018)

    Chapter  Google Scholar 

  79. Yang, P.; Zhao, G.; Zeng, P.: Phishing website detection based on multidimensional features driven by deep learning. IEEE Access 7, 15196–15209 (2019)

    Article  Google Scholar 

  80. Sahingoz, O.K.; Buber, E.; Demir, Ö.; Diri, B.: Machine learning based phishing detection from urls. Expert Syst. Appl. 117, 345–357 (2019)

    Article  Google Scholar 

  81. Wei, B.; Hamad, R.A.; Yang, L.; He, X.; Wang, H.; Gao, B.; Woo, W.L.: A deep-learning-driven light-weight phishing detection sensor. Sensors 19(19), 4258 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Alsaeedi.

Appendix

Appendix

Table 26 Summary of the results attained after conducting the preliminary experiments using the PHEME dataset with all events
Table 27 Summary of the results attained after conducting the final experiments using the PHEME dataset with all events with final setting (pooling = GlobalMaxPooling, activation method = tanh, optimizer= Adagrad, no-dropout, embedding dimension = 400, window size = 5, filter size = 100, number of units in dense layer = 100)
Table 28 Summary of the results obtained using the proposed CNN based on the Ferguson event in the PHEME dataset
Table 29 Summary of the results obtained using the proposed CNN based on the Sydney Siege event in the PHEME dataset
Table 30 Summary of the results obtained using the proposed CNN based on the Charlie Hebdo event
Table 31 Summary of the results obtained using the proposed CNN based on the Germanwings Crash event
Table 32 Summary of the results obtained using the proposed CNN based on the Ottawa Shooting event

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaeedi, A., Al-Sarem, M. Detecting Rumors on Social Media Based on a CNN Deep Learning Technique. Arab J Sci Eng 45, 10813–10844 (2020). https://doi.org/10.1007/s13369-020-04839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04839-2

Keywords

Navigation