Skip to main content
Log in

Spectroscopic, Structural, DFT and Molecular Docking Studies on Novel Cocrystal Salt Hydrate of Chromotropic Acid and Its Antibiofilm Activity

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A novel organic cocrystal salt hydrate (CTPTH) of Chromotropic acid with 1,10-phenanthroline was successfully obtained using both traditional solution method and liquid-assisted grinding method, a green approach. The formation and characterization were done by Powder x-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and the structural confirmation by single crystal x-ray diffraction. The molecular properties were studied using density functional theory, B3LYP/def2-SVP including dispersion correction (D3) to calculate the HOMO and LUMO energies using Orca and Gaussian packages. The calculated geometric parameters were in good agreement with those of experimentally observed. The non-bonding interaction between the CTPTH and active site of the crystal structure of quorum-quenching N-Acyl homoserine lactone lactonase (PDB: 2BR6) in bacterium was studied by molecular docking. The total energy of ligand interaction of CTPTH with the receptor is found to be − 42.78 kcal mol−1. The Hirshfeld surfaces were mapped over dnorm for the identification and quantification of robust synthons for a better understanding of the overall packing pattern of CTPTH. In addition, the antibiofilm efficacy of CTPTH against the pathogenic bacterium Pseudomonas aeruginosa was also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Grant, S.S.; Hung, D.T.: Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4, 273–283 (2013). https://doi.org/10.4161/viru.23987

    Article  Google Scholar 

  2. Hathroubi, S.; Mekni, M.A.; Domenico, P.; Nguyen, D.; Jacques, M.: Biofilms: microbial shelters against antibiotics. Microb. Drug Resist. 23, 147–156 (2017). https://doi.org/10.1089/mdr.2016.0087

    Article  Google Scholar 

  3. Costerton, J.W.: Bacterial biofilms: a common cause of persistent infections. Science 284(80), 1318–1322 (1999). https://doi.org/10.1126/science.284.5418.1318

    Article  Google Scholar 

  4. Vasudevan, R.: Biofilms: microbial cities of scientific significance. J. Microbiol. Exp. (2014). https://doi.org/10.15406/jmen.2014.01.00014

    Article  Google Scholar 

  5. Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.-F.; Alarcon, E.I.: Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4, e01067 (2018). https://doi.org/10.1016/j.heliyon.2018.e01067

    Article  Google Scholar 

  6. Desiraju, G.R.: Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 135, 9952–9967 (2013). https://doi.org/10.1021/ja403264c

    Article  Google Scholar 

  7. Domingos, S.; André, V.; Quaresma, S.; Martins, I.C.B.; Minas da Piedade, M.F.; Duarte, M.T.: New forms of old drugs: improving without changing. J. Pharm. Pharmacol. 67, 830–846 (2015). https://doi.org/10.1111/jphp.12384

    Article  Google Scholar 

  8. Shaikh, R.; Singh, R.; Walker, G.M.; Croker, D.M.: Pharmaceutical cocrystal drug products: an outlook on product development. Trends Pharmacol. Sci. 39, 1033–1048 (2018). https://doi.org/10.1016/j.tips.2018.10.006

    Article  Google Scholar 

  9. Bond, A.D.: What is a co-crystal? CrystEngComm 9, 833 (2007). https://doi.org/10.1039/b708112j

    Article  Google Scholar 

  10. Wong, S.N.; Hu, S.; Ng, W.W.; Xu, X.; Lai, K.L.; Lee, W.Y.T.; Chow, A.H.L.; Sun, C.C.; Chow, S.F.: Cocrystallization of curcumin with benzenediols and benzenetriols via rapid solvent removal. Cryst. Growth Des. 18, 5534–5546 (2018). https://doi.org/10.1021/acs.cgd.8b00849

    Article  Google Scholar 

  11. Kumar Tewari, P.; Kumar Singh, A.: Amberlite XAD-2 functionalized with chromotropic acid: synthesis of a new polymer matrix and its applications in metal ion enrichment for their determination by flame atomic absorption spectrometry. Analyst 124, 1847–1851 (1999). https://doi.org/10.1039/a906479f

    Article  Google Scholar 

  12. Duda, J.: Biological activity, reactivity, and use of chromotropic acid and its derivatives. Chem. Soc. Rev. 23, 425 (1994). https://doi.org/10.1039/cs9942300425

    Article  Google Scholar 

  13. Clercq, E.De: New selective antiviral agents active against the AIDS virus. Trends Pharmacol. Sci. 8, 339–345 (1987). https://doi.org/10.1016/0165-6147(87)90143-X

    Article  Google Scholar 

  14. Tan, G.T.; Wickramasinghe, A.; Verma, S.; Singh, R.; Pezzuto, J.M.; Mohan, P.; Wickramasinghe, A.; Singh, R.; Pezzuto, J.M.; Pezzuto, J.M.; Hughes, S.H.; Baba, M.: Potential anti-aids naphthalenesulfonic acid derivatives synthesis and inhibition of HIV-1 induced cytopathogenesis and HIV-1 and HIV-2 reverse transcriptase activities. J. Med. Chem. 35, 4846–4853 (1992). https://doi.org/10.1021/jm00104a010

    Article  Google Scholar 

  15. Akerfeldt, S.; Westin, G.; Jansson, T.: Aromatic sulfonic acids as viral inhibitors. Structure-activity study using rhino, adeno 3, herpes simplex, and influenza viruses. J. Med. Chem. 14, 596–600 (1971). https://doi.org/10.1021/jm00289a010

    Article  Google Scholar 

  16. Sharma, R.C.; Sharma, R.S.; Tripathi, S.P.: Biologically active mixed-ligand complexes of Cu(II), Ni(II) and Zn(II) and their effect on some bacteria and fungi. Curr. Sci. 52, 410–412 (1983)

    Google Scholar 

  17. Abidi, S.S.A.; Azim, Y.; Khan, S.N.; Khan, A.U.: Sulfaguanidine cocrystals: synthesis, structural characterization and their antibacterial and hemolytic analysis. J. Pharm. Biomed. Anal. 149, 351–357 (2018). https://doi.org/10.1016/j.jpba.2017.11.028

    Article  Google Scholar 

  18. El Hamdani, H.; El Amane, M.; Duhayon, C.: Studies on the syntheses, structural characterization, antimicrobial of the CO-CRYSTAL 1,10-phenanthrolin-1-IUM(1,10-phenH +)-caffeine(caf)-hexafluorophosphate. J. Mol. Struct. 1155, 789–796 (2018). https://doi.org/10.1016/j.molstruc.2017.11.076

    Article  Google Scholar 

  19. ACD/Percepta, version 2019.2.2, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com. (2020)

  20. Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R.: SIR 97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 32, 115–119 (1999). https://doi.org/10.1107/S0021889898007717

    Article  Google Scholar 

  21. Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr. 64, 112–122 (2008). https://doi.org/10.1107/S0108767307043930

    Article  MATH  Google Scholar 

  22. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009). https://doi.org/10.1107/S0021889808042726

    Article  Google Scholar 

  23. Neese, F.: The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012). https://doi.org/10.1002/wcms.81

    Article  Google Scholar 

  24. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2016)

  25. Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  26. Tirado-Rives, J.; Jorgensen, W.L.: Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 4, 297–306 (2008). https://doi.org/10.1021/ct700248k

    Article  Google Scholar 

  27. Weigend, F.; Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005). https://doi.org/10.1039/b508541a

    Article  Google Scholar 

  28. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  Google Scholar 

  29. Ahmad, F.; Alam, M.J.; Alam, M.; Azaz, S.; Parveen, M.; Park, S.; Ahmad, S.: Synthesis, spectroscopic, computational (DFT/B3LYP), AChE inhibition and antioxidant studies of imidazole derivative. J. Mol. Struct. 1151, 327–342 (2018). https://doi.org/10.1016/j.molstruc.2017.09.056

    Article  Google Scholar 

  30. Alam, M.; Lee, D.-U.: Synthesis, spectroscopic and computational studies of 2-(thiophen-2-yl)-2,3-dihydro-1H-perimidine: an enzymes inhibition study. Comput. Biol. Chem. 64, 185–201 (2016). https://doi.org/10.1016/j.compbiolchem.2016.06.006

    Article  Google Scholar 

  31. Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J.: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005). https://doi.org/10.1093/nar/gki481

    Article  Google Scholar 

  32. Spackman, M.A.; Jayatilaka, D.: Hirshfeld surface analysis. CrystEngComm 11, 19–32 (2009). https://doi.org/10.1039/B818330A

    Article  Google Scholar 

  33. O’Toole, G.A.; Kolter, R.: Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449–461 (1998). https://doi.org/10.1046/j.1365-2958.1998.00797.x

    Article  Google Scholar 

  34. Ghanbarzadeh Corehtash, Z.; Khorshidi, A.; Firoozeh, F.; Akbari, H.; Mahmoudi Aznaveh, A.: Biofilm formation and virulence factors among pseudomonas aeruginosa isolated from burn patients. Jundishapur J. Microbiol. 8, 1 (2015). https://doi.org/10.5812/jjm.22345

    Article  Google Scholar 

  35. Garg, U.; Azim, Y.; Kar, A.; Pradeep, C.P.: Cocrystals/salt of 1-naphthaleneacetic acid and utilizing Hirshfeld surface calculations for acid–aminopyrimidine synthons. CrystEngComm 22, 2978–2989 (2020). https://doi.org/10.1039/D0CE00106F

    Article  Google Scholar 

  36. Velmurugan, G.; Angeline Vedha, S.; Venuvanalingam, P.: Computational evaluation of optoelectronic and photophysical properties of unsymmetrical distyrylbiphenyls. RSC Adv. 4, 53060–53071 (2014). https://doi.org/10.1039/C4RA07809H

    Article  Google Scholar 

  37. Zhan, C.-G.; Nichols, J.A.; Dixon, D.A.: Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J. Phys. Chem. A 107, 4184–4195 (2003). https://doi.org/10.1021/jp0225774

    Article  Google Scholar 

  38. Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, B.: Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem. Phys. Lett. 323, 59–70 (2000). https://doi.org/10.1016/S0009-2614(00)00488-7

    Article  Google Scholar 

  39. Al-Asbahy, W.M.; Usman, M.; Arjmand, F.; Shamsi, M.; Tabassum, S.: A dinuclear copper(II) complex with piperazine bridge ligand as a potential anticancer agent: DFT computation and biological evaluation. Inorganica Chim. Acta. 445, 167–178 (2016). https://doi.org/10.1016/j.ica.2016.02.046

    Article  Google Scholar 

  40. Bayannavar, P.K.; Sannaikar, M.S.; Madan Kumar, S.; Inamdar, S.R.; Shaikh, S.K.J.; Nesaragi, A.R.; Kamble, R.R.: Synthesis, X-ray characterization, DFT studies and Hirshfeld surface analysis of new organic single crystal: 2-(4-Methoxyphenyl)-4-{[2’-(1H-tetrazol-5-yl)biphenyl-4-yl] methyl}-2,4-dihydro-3H-1,2,4-triazol-3-one (MTBT). J. Mol. Struct. 1179, 809–819 (2019). https://doi.org/10.1016/j.molstruc.2018.11.060

    Article  Google Scholar 

  41. Suresh Kumar, S.; Athimoolam, S.; Sridhar, B.: Structural, spectral, theoretical and anticancer studies on new co-crystal of the drug 5-fluorouracil. J. Mol. Struct. 1173, 951–958 (2018). https://doi.org/10.1016/j.molstruc.2018.07.079

    Article  Google Scholar 

Download references

Acknowledgements

SSAA, UG, and YA are thankful to the Department of Applied Chemistry, A.M.U., for providing research facilities. UG is also thankful to CSIR-JRF for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Azim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abidi, S.S.A., Garg, U., Azim, Y. et al. Spectroscopic, Structural, DFT and Molecular Docking Studies on Novel Cocrystal Salt Hydrate of Chromotropic Acid and Its Antibiofilm Activity. Arab J Sci Eng 46, 353–364 (2021). https://doi.org/10.1007/s13369-020-04822-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04822-x

Keywords

Navigation