Skip to main content
Log in

Rock Crack Propagation Mechanism of Oriented Perforation Hydraulic Fracture under Different Perforation Parameters

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In order to obtain the mechanism of crack propagation of oriented perforation hydraulic fracture and its effect on mechanical properties of rock samples, an experimental study on hydraulic fracture of rock samples without confining pressure was carried out. The confining pressure ratio coefficient was defined, and oriented perforation hydraulic fracture was numerically simulated based on the extended finite element method so as to explore the comprehensive influence of different perforation parameters. The results demonstrated that the crack initiates and propagates along the direction of perforation azimuth angle, and the crack of oriented perforation is slightly wider than that of non-oriented perforation. The difficulty of crack initiation and turning increases with the perforation azimuth angle and decreases with the confining pressure ratio coefficient. Crack initiation and propagation are mainly driven by tensile stress, and the crack initiation pressure increases with the perforation azimuth angle and the confining pressure ratio coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Valko, P.; Economides, M.J.: Hydraulic fracture mechanics. Wiley, New York (1995)

    Google Scholar 

  2. Hubbert, M.K.: Mechanics of hydraulic fracturing. Dev. Pet. Sci. 210(07), 369–390 (1972)

    Google Scholar 

  3. Chen, H.; Carter, K.E.: Water usage for natural gas production through hydraulic fracturing in the United States from 2008 to 2014. J. Environ. Manage. 170, 152–159 (2016)

    Article  Google Scholar 

  4. Huang, B.X.: Research on theory and application of hydraulic fracture weakening for coal-rock mass. J. China Coal. Soc. 35(10), 1765–1766 (2010). (in Chinese)

    Google Scholar 

  5. Almasi, S.N.; Bagherpour, R.; Mikaeil, R.; Ozcelik, Y.: Developing a new rock classification based on the abrasiveness, hardness, and toughness of rocks and PA for the prediction of hard dimension stone sawability in quarrying. Geosyst. Eng. 20(6), 295–310 (2017)

    Article  Google Scholar 

  6. Cherny, S.; Esipov, D.; Kuranakov, D.; Lapin, V.; Chirkov, D.; Astrakova, A.: Prediction of fracture initiation zones on the surface of three-dimensional structure using the surface curvature. Eng. Fract. Mech. 172, 196–214 (2017)

    Article  Google Scholar 

  7. José, I.A.; Detournay, E.: Plane strain propagation of a hydraulic fracture in a permeable rock. Eng. Fract. Mech. 75, 4666–4694 (2008)

    Article  Google Scholar 

  8. Bouteca, M.J.: 3D analytical model for hydraulic fracturing: theory and field test. In: Proceedings of SPE Annual Technical Conference and Exhibition, spe13276 (1984)

  9. Abass, H.H.; Brumley, J.L.; Venditto, J.J.: Oriented perforations—a rock mechanics view. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1994)

  10. Abass, H.H.; Hedayati, S.; Meadows, D.L.: Nonplanar fracture propagation from a horizontal wellbore: experimental study. Spe. Prod. Fac. 11(1–6), 133–137 (1996)

    Article  Google Scholar 

  11. Jiang, H.; Chen, M.; Zhang, G.; Yan, J.; Zhao, Z.; Zhu, G.: Impact of oriented perforation on hydraulic fracture initiation and propagation. J. Rock Mech. Eng. 28(7), 1321–1326 (2009). (in Chinese)

    Google Scholar 

  12. Zhu, H.; Deng, J.; Jin, X.; Hu, L.; Luo, B.: Hydraulic fracture initiation and propagation from wellbore with oriented perforation. Rock Mech. Rock Eng. 48(2), 585–601 (2015)

    Article  Google Scholar 

  13. Fallahzadeh, S.H.; Rasouli, V.; Sarmadivaleh, M.: An investigation of hydraulic fracturing initiation and near-wellbore propagation from perforated boreholes in tight formations. Rock Mech. Rock Eng. 48(2), 573–584 (2015)

    Article  Google Scholar 

  14. Zhao, X.; Huang, B.; Wang, Z.: Experimental investigation on the basic law of directional hydraulic fracturing controlled by dense linear multi-hole drilling. Rock Mech. Rock Eng. 51, 1–16 (2018)

    Article  Google Scholar 

  15. Lecampion, B.: An extended finite element method for hydraulic fracture problems. Int. J. Numer. Methods Biomed. 25(2), 121–133 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Hamidi, F.; Mortazavi, A.: A new three dimensional approach to numerically model hydraulic fracturing process. J. Petrol. Sci. Eng. 124, 451–467 (2014)

    Article  Google Scholar 

  17. Abuaisha, M.; Eaton, D.; Priest, J.; Wong, R.: Hydro-mechanically coupled FDEM framework to investigate near–wellbore hydraulic fracturing in homogeneous and fractured rock formations. J. Petrol. Sci. Eng. 154, 100–113 (2017)

    Article  Google Scholar 

  18. Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)

    Article  MATH  Google Scholar 

  19. Stolarska, M.; Chopp, D.L.; Moes, N.; Belytschko, T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51(8), 943–960 (2001)

    Article  MATH  Google Scholar 

  20. Vahab, M.; Khalili, N.: Numerical investigation of the flow regimes through hydraulic fractures using the X-FEM technique. Eng. Fract. Mech. 169, 146–162 (2017)

    Article  Google Scholar 

  21. Sepehri, J.; Soliman, M.Y.; Morse, S.M.: Application of extended finite element method to simulate hydraulic fracture propagation from oriented perforations. In: SPE Hydraulic Fracturing Technology Conference (2015)

  22. Haddad, M.; Sepehrnoori, K.: XFEM-based CZM for the simulation of 3D multiple-cluster hydraulic fracturing in quasi-brittle shale formations. Rock Mech. Rock Eng. 49, 1–18 (2015)

    Google Scholar 

  23. Chen, J.; Wei, B.; Xie, Q.; Wang, H.; Li, T.; Wang, H.: Simulation of multi-hydro fracture horizontal wells in shale based on the extended finite element method. Appl. Math. Mech. 37(1), 73–83 (2016). (in Chinese)

    Google Scholar 

  24. Mohammadnejad, T.; Khoei, A.R.: An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem. Anal. Des. 73(15), 77–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hossain, M.M.; Rahman, M.K.; Rahman, S.S.: Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes. J. Petrol. Sci. Eng. 27(3), 129–149 (2000)

    Article  Google Scholar 

  26. Schmitt, D.R.; Zoback, M.D.: Poroelastic effects in the determination of the maximum horizontal principal stress in hydraulic fracturing tests—a proposed breakdown equation employing a modified effective stress relation for tensile failure. Int. J. Rock Mech. Min. Sci. Geomech. 26(6), 499–506 (1989)

    Article  Google Scholar 

  27. Aubertin, M.; Li, L.; Simon, R.: M: A multiaxial stress criterion for short-and long-term strength of isotropic rock media. Int. J. Rock Mech. Min. 37(8), 1169–1193 (2000)

    Article  Google Scholar 

  28. Zhao, B.; Wen, G.; Sun, H.; Sun, D.; Wang, B.: Similarity criteria and coal-like material in coal and gas outburst physical simulation. Int. J. Coal Sci. Technol. 5(2), 167–178 (2018)

    Article  Google Scholar 

  29. Han, L.H.; Elliott, J.A.; Bentham, A.C.; Mills, A.; Amidon, G.E.; Hancock, B.C.: A modified Drucker–Prager cap model for die compaction simulation of pharmaceutical powders. Int. J. Solids Struct. 45(10), 3088–3106 (2008)

    Article  MATH  Google Scholar 

  30. Zhou, R.; Zhang, L.H.; He, B.Y.; Liu, Y.H.: Numerical simulation of residual stress field in green power metallurgy compacts by modified Drucker–Prager cap model. Trans. Nonferr. Met. Soc. 23(8), 2374–2382 (2013)

    Article  Google Scholar 

  31. Peruzzo, C.; Simoni, L.; Schrefler, B.A.: On step-wise advancement of fractures and pressure oscillations in saturated porous media. Eng. Fract. Mech. 215, 246–250 (2019)

    Article  Google Scholar 

  32. Cao, T.D.; Hussain, F.; Schrefler, B.A.: Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations. J. Mech. Phys. Solid 111, 113–133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Soliman, M.Y.; Wigwe, M.; Alzahabi, A.; Pirayesh, E.; Stegent, N.: Analysis of fracturing pressure data in heterogeneous shale formations. J. Hydraul. Eng. 1, 8–12 (2014)

    Google Scholar 

  34. Vahab, M.; Khalili, N.: Empirical and conceptual challenges in hydraulic fracturing with special reference to the inflow. Int. J. Geomech. 20(3), 04019182 (2020)

    Article  Google Scholar 

  35. Tvergaard, V.; Needleman, A.: An analysis of the brittle-ductile transition in dynamic crack growth. Int. J. Fract. 59(1), 53–67 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.51975570), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP) and Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhang, D. & Liu, H. Rock Crack Propagation Mechanism of Oriented Perforation Hydraulic Fracture under Different Perforation Parameters. Arab J Sci Eng 45, 8711–8725 (2020). https://doi.org/10.1007/s13369-020-04821-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04821-y

Keywords

Navigation