Skip to main content
Log in

A Fuzzy Multi-objective Mathematical Programming Model for Project Management Decisions Considering Quality and Contractual Reward and Penalty Costs in a Project Network

  • Research Article-Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Project management is a process that schemes and controls the project life cycle via the easiest and the best way to achieve project goals. Project managers always aim to simultaneously handle conflicting goals in the organization. In this paper, a new mathematical model is proposed that simultaneously minimizes total cost and completion time and maximizes the quality in the project management decision problem. Contractual penalty cost and contractual reward cost with a new method are the other consideration in the proposed model. In the projects, the relation between time and direct cost is a nonlinear function. Hence, a linearization technique is presented with attention to variable change and piecewise linearization, in which nonlinear function is converted to the linear programming model. On the other hand, in real conditions according to uncertainty in environmental situations and incomplete information, there can be ambiguity in parameters and variables of the problem. The uncertainty of the parameters and variables is expressed with fuzzy sets theory and fuzzy mathematical programming. The other aim of this paper is to introduce a modified version of fully fuzzy multi-objective linear programming for the problem. For analyzing a fully fuzzy time–cost–quality project management model, a practical example of the literature is provided. By examining the results of the model with conflicting objectives, two scenarios are presented to explore the interactions of conflicting objectives on the project, and the results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang, M.F.; Lin, Y.: Applying fuzzy multi-objective linear programming to project management decisions with the interactive two-phase method. Comput. Ind. Eng. 66(4), 1061–1069 (2013)

    Article  MathSciNet  Google Scholar 

  2. DePorter, E.L.; Ellis, K.P.: Optimization of project networks with goal programming and fuzzy linear programming. Comput. Ind. Eng. 19(1–4), 500–504 (1990)

    Article  Google Scholar 

  3. Liang, T.F.: Project management decisions using fuzzy linear programming. Int. J. Syst. Sci. 37(15), 1141–1152 (2006)

    Article  Google Scholar 

  4. Ehsani, E.; Kazemi, N.; Olugu, E.U.; Grosse, E.H.; Schwindl, K.: Applying fuzzy multi-objective linear programming to a project management decision with nonlinear fuzzy membership functions. Neural Comput. Appl. 28(8), 2193–2206 (2017)

    Article  Google Scholar 

  5. Wang, R.C.; Liang, T.F.: Project management decisions with multiple fuzzy goals. Constr. Manag. Econ. 22(10), 1047–1056 (2004)

    Article  Google Scholar 

  6. Moussourakis, J.; Haksever, C.: Project compression with nonlinear cost functions. J. Constr. Eng. Manag. 136(2), 251–259 (2009)

    Article  Google Scholar 

  7. Ballesteros-Perez, P.; Elamrousy, K.M.; González-Cruz, M.C.: Non-linear time-cost trade-off models of activity crashing: application to construction scheduling and project compression with fast-tracking. Autom. Constr. 97, 229–240 (2019)

    Article  Google Scholar 

  8. Pathak, B.K.; Srivastava, S.: Integrated ANN-HMH approach for nonlinear time-cost tradeoff problem. Int. J. Comput. Intell. Syst. 7(3), 456–471 (2014)

    Article  Google Scholar 

  9. Falk, J.E.; Horowitz, J.L.: Critical path problems with concave cost-time curves. Manag. Sci. 19(4-part-1), 446–455 (1972)

    Article  Google Scholar 

  10. Cajzek, R.; Klanšek, U.: Mixed-integer nonlinear programming based optimal time scheduling of construction projects under nonconvex costs. Tehnički vjesnik 23(1), 9–18 (2016)

    Google Scholar 

  11. Deckro, R.F.; Hebert, J.E.; Verdini, W.A.; Grimsrud, P.H.; Venkateshwar, S.: Nonlinear time/cost tradeoff models in project management. Comput. Ind. Eng. 28(2), 219–229 (1995)

    Article  Google Scholar 

  12. Feylizadeh, M.R.; Mahmoudi, A.; Bagherpour, M.; Li, D.F.: Project crashing using a fuzzy multi-objective model considering time, cost, quality and risk under fast tracking technique: a case study. J. Intell. Fuzzy Syst. (2019). https://doi.org/10.3233/JIFS-18171

    Article  Google Scholar 

  13. Göçken, T.: Solution of fuzzy multi-objective project crashing problem. Neural Comput. Appl. 23(7–8), 2167–2175 (2013)

    Article  Google Scholar 

  14. Hajiagha, S.H.R.; Akrami, H.; Hashemi, S.S.; Amoozad, H.: An integer grey goal programming for project time, cost and quality trade-off. Inzinerine Ekonomika 26(1), 93–100 (2015)

    Google Scholar 

  15. Mohammadipour, F.; Sadjadi, S.J.: Project cost–quality–risk tradeoff analysis in a time-constrained problem. Comput. Ind. Eng. 95, 111–121 (2016)

    Article  Google Scholar 

  16. Liang, T.F.; Huang, T.S.; Yang, M.F.: Application of fuzzy mathematical programming to imprecise project management decisions. Qual. Quant. 46(5), 1451–1470 (2012)

    Article  Google Scholar 

  17. Abdel-Basset, M.; Ali, M.; Atef, A.: Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Comput. Ind. Eng. 141, 106286 (2020)

    Article  Google Scholar 

  18. Eydi, A.; Farughi, H.; Abdi, F.: A hybrid method based on fuzzy AHP and VIKOR for the discrete time-cost-quality trade-off problem. J. Optim. Industr. Eng. 9(19), 105–116 (2016)

    Google Scholar 

  19. Orm, M.B.; Jeunet, J.: Time cost quality trade-off problems: a survey exploring the assessment of quality. Comput. Ind. Eng. 118, 319–328 (2018)

    Article  Google Scholar 

  20. Li, H.; Cao, J.N.; Love, P.E.D.: Using machine learning and GA to solve time-cost trade-off problems. J. Constr. Eng. Manag. 125(5), 347–353 (1999)

    Article  Google Scholar 

  21. Zhang, H.; Xing, F.: Fuzzy-multi-objective particle swarm optimization for time–cost–quality tradeoff in construction. Autom. Constr. 19(8), 1067–1075 (2010)

    Article  Google Scholar 

  22. Ahariand, R.M.; Niaki, S.T.A.: Fuzzy optimization in cost, time and quality trade-off in software projects with quality obtained by fuzzy rule base. Int. J. Model. Optim. 3(2), 176–179 (2013)

  23. Hajiagha, S.H.R.; Mahdiraji, H.A.; Hashemi, S.S.: A hybrid model of fuzzy goal programming and grey numbers in continuous project time, cost, and quality tradeoff. Int. J. Adv. Manuf. Technol. 71(1–4), 117–126 (2014)

    Article  Google Scholar 

  24. Jebaseeli, M.E.; Dhayabaran, D.P.: Integer programming model for fuzzy time cost and quality trade off problem. Int. J. Eng. Sci. Innov. Technol. (IJESIT) 4(3), 97–106 (2015)

    Google Scholar 

  25. Reza-Pour, F.; Khalili-Damghani, K.: A new stochastic time-cost-quality trade-off project scheduling problem considering multiple-execution modes, preemption, and generalized precedence relations. Indus. Eng. Manag. Syst. 16(3), 271–287 (2017)

    Google Scholar 

  26. Luong, D.-L.; Tran, D.-H.; Nguyen, P.T.: Optimizing multi-mode time-cost-quality trade-off of construction project using opposition multiple objective difference evolution. Int. J. Constr. Manag. 1(13), 1–13 (2018)

    Google Scholar 

  27. Hamta, N.; Ehsanifar, M.; Sarikhani, J.: Presenting a goal programming model in the time-cost-quality trade-off. Int. J. Constr. Manag. 1(11), 111 (2018)

    Google Scholar 

  28. Chakrabortty, R.K.; Sarker, R.A.; Essam, D.L.: Single mode resource constrained project scheduling with unreliable resources. Oper. Res. 1(35), 1–35 (2018)

    Google Scholar 

  29. Khodakarami, V.; Abdi, A.: Project cost risk analysis: a Bayesian networks approach for modeling dependencies between cost items. Int. J. Project Manag. 32(7), 1233–1245 (2014)

    Article  Google Scholar 

  30. Meena, R.K.; Jain, M.; Sanga, S.S.; Assad, A.: Fuzzy modeling and harmony search optimization for machining system with general repair, standby support and vacation. Appl. Math. Comput. 361, 858–873 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Grzegorzewski, P.: Nearest interval approximation of a fuzzy number. Fuzzy Sets Syst. 130(3), 321–330 (2002)

    Article  MathSciNet  Google Scholar 

  32. Buckley, J.J.; Feuring, T.: Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming. Fuzzy Sets Syst. 109(1), 35–53 (2000)

    Article  MathSciNet  Google Scholar 

  33. Sharma, U.; Aggarwal, S.: Solving fully fuzzy multi-objective linear programming problem using nearest interval approximation of fuzzy number and interval programming. Int. J. Fuzzy Syst. 20(2), 488–499 (2018)

    Article  MathSciNet  Google Scholar 

  34. Mohagheghi, V.; Mousavi, S.M.; Mojtahedi, M.; Newton, S.: (2019) Evaluating large, high-technology project portfolios using a novel interval-valued Pythagorean fuzzy set framework: an automated crane project case study. Expert Syst. Appl. (2019). https://doi.org/10.1016/j.eswa.2019.113007

    Article  Google Scholar 

  35. Birjandi, A.; Mousavi, S.M.; Hajirezaie, M.; Vahdani, B.: A new weighted mixed integer nonlinear model and FPND solution algorithm for RCPSP with multi-route work packages under fuzzy uncertainty. J. Intell. Fuzzy Syst. 37, 737–751 (2019)

    Article  Google Scholar 

  36. Davoudabadi, R.; Mousavi, S.M.; Šaparauskas, J.; Gitinavard, H.: Solving construction project selection problem by a new uncertain weighting and ranking based on compromise solution with linear assignment approach. J. Civil Eng. Manag. 25(3), 241–251 (2019)

    Article  Google Scholar 

  37. Mohagheghi, V.; Mousavi, S.M.: A new framework for high-technology project evaluation and project portfolio selection based on Pythagorean fuzzy WASPAS, MOORA and mathematical modelling. Iran. J. Fuzzy Syst. 16(6), 89–106 (2019)

    MathSciNet  Google Scholar 

  38. Haghighi, M.H.; Mousavi, S.M.; Antucheviciene, J.; Mohagheghi, V.: A new analytical methodology to handle time-cost trade-off problem with considering quality loss cost under interval-valued fuzzy uncertainty. Technol. Econ. Dev. Econ. 25(2), 277–299 (2019)

    Article  Google Scholar 

  39. Mohagheghi, V.; Mousavi, S.M.; Vahdani, B.; Siadat, A.: A mathematical modeling approach for high and new technology-project portfolio selection under uncertain environments. J. Intell. Fuzzy Syst. 32, 4069–4079 (2017)

    Article  Google Scholar 

  40. Dorfeshan, Y.; Mousavi, S.M.; Vahdani, B.; Mohagheghi, V.: Solving critical path problem in project network by a new enhanced multiobjective optimization of simple ratio analysis approach with interval type-2 fuzzy sets. Int. J. Eng. Trans. C Asp. 30(9), 1352–1361 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to the editor and anonymous reviewers for their valuable recommendations on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mousavi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, S.M., Mousavi, S.M. & Patoghi, A. A Fuzzy Multi-objective Mathematical Programming Model for Project Management Decisions Considering Quality and Contractual Reward and Penalty Costs in a Project Network. Arab J Sci Eng 46, 1617–1629 (2021). https://doi.org/10.1007/s13369-020-04800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04800-3

Keywords

Navigation