Skip to main content
Log in

High-Order Fuzzy Time Series Forecasting by Using Membership Values Along with Data and Support Vector Machine

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

A Correction to this article was published on 15 July 2020

This article has been updated

Abstract

In the past few years, non-stochastic fuzzy time series (FTS) models have drawn remarkable attention of researchers from different domains. Unlike traditional stochastic models, FTS models do not require any strict assumption on the characteristics of data to be modeled and are applicable to time series even with uncertainty. However, the effectiveness of FTS models largely depends on the determination of effective length of interval and modeling of fuzzy logical relationships (FLRs). Motivated by this, in this paper, we have developed a novel method using fuzzy c-means clustering to determine the unequal-length of interval. Additionally, for the first-time membership values are considered while modeling the FLRs using support vector machine (SVM). The order of the model is determined by analyzing the autocorrelation function and partial autocorrelation function of the time series. To measure the accuracy of the proposed model, ten different time series datasets are considered. Four recently developed fuzzy time series forecasting models and two popular crisp time series forecasting models using MLP and SVM are considered for comparative performance analysis. From the experimental result analysis, it is observed that the proposed model outperforms other alternatives and shows statistically better forecasting accuracy based on the popular Wilcoxon signed-rank test; and Friedman and Nemenyi hypothesis test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 15 July 2020

    In the original publication, ‘ALGORITHM 1’ was missed out completely during typesetting.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1109/2.53

    Article  MATH  Google Scholar 

  2. Song, Q.; Chissorn, B.S.: Forecasting enrollments with fuzzy time series-part II. Fuzzy Sets Syst. 62, 1–8 (1994)

    Article  Google Scholar 

  3. Song, Q.; Chissom, B.S.: Forecasting enrollments with fuzzy time series—part I. Fuzzy Sets Syst. (1993). https://doi.org/10.1016/0165-0114(93)90355-L

    Article  Google Scholar 

  4. Chen, S.M.: Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst. (1996). https://doi.org/10.1016/0165-0114(95)00220-0

    Article  Google Scholar 

  5. Cagcag Yolcu, O.; Lam, H.K.: A combined robust fuzzy time series method for prediction of time series. Neurocomputing 247, 87–101 (2017). https://doi.org/10.1016/j.neucom.2017.03.037

    Article  Google Scholar 

  6. Bas, E.; Grosan, C.; Egrioglu, E.; Yolcu, U.: High order fuzzy time series method based on pi-sigma neural network. Eng. Appl. Artif. Intell. 72, 350–356 (2018). https://doi.org/10.1016/j.engappai.2018.04.017

    Article  Google Scholar 

  7. Panigrahi, S.; Behera, H.S.: A computationally efficient method for high order fuzzy time series forecasting. J. Theor. Appl. Inf. Technol. 96, 7215–7226 (2018). https://doi.org/10.1016/j.engappai.2019.103245

    Article  Google Scholar 

  8. Panigrahi, S.; Behera, H.S.: A study on leading machine learning techniques for high order fuzzy time series forecasting. Eng. Appl. Artif. Intell. 87, 103245 (2020). https://doi.org/10.1016/j.engappai.2019.103245

    Article  Google Scholar 

  9. Pattanayak, R.M.; Behera, H.S.: Higher order neural network and its applications: a comprehensive survey. In: Pattnaik, P., Rautaray, S., Das, H., Nayak, J. (eds.) Advances in Intelligent Systems and Computing, pp. 695–709. Springer, Singapore (2018)

    Google Scholar 

  10. Panigrahi, S.; Behera, H.S.: Fuzzy time series forecasting: a survey. In: Behera, H., Nayak, J., Naik, B., Pelusi, D. (eds.) Computational Intelligence in Data Mining, pp. 641–651. Springer, Singapore (2020)

    Chapter  Google Scholar 

  11. Huarng, K.: Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets Syst. 123, 387–394 (2001). https://doi.org/10.1016/S0165-0114(00)00057-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Huarng, K.; Yu, T.H.: Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36, 328–340 (2006)

    Article  Google Scholar 

  13. Yolcu, U.; Aladag, C.H.; Egrioglu, E.; Uslu, V.R.: Time-series forecasting with a novel fuzzy time-series approach: an example for Istanbul stock market. J. Stat. Comput. Simul. 83, 597–610 (2013). https://doi.org/10.1080/00949655.2011.630000

    Article  MathSciNet  MATH  Google Scholar 

  14. Egrioglu, E.; Aladag, C.H.; Yolcu, U.; Uslu, V.R.; Basaran, M.A.: Finding an optimal interval length in high order fuzzy time series. Expert Syst. Appl. 37, 5052–5055 (2010). https://doi.org/10.1016/j.eswa.2009.12.006

    Article  Google Scholar 

  15. Singh, P.; Borah, B.: An efficient time series forecasting model based on fuzzy time series. Eng. Appl. Artif. Intell. 26, 2443–2457 (2013). https://doi.org/10.1016/j.engappai.2013.07.012

    Article  Google Scholar 

  16. Chen, S.M.; Chung, N.Y.: Forecasting enrollments using high-order fuzzy time series and genetic algorithms. Int. J. Intell. Syst. 21, 485–501 (2006). https://doi.org/10.1002/int.20145

    Article  MATH  Google Scholar 

  17. Eǧrioǧlu, E.: A new time-invariant fuzzy time series forecasting method based on genetic algorithm. Adv. Fuzzy Syst. (2012). https://doi.org/10.1155/2012/785709

    Article  MathSciNet  Google Scholar 

  18. Kuo, I.H.; Horng, S.J.; Kao, T.W.; Lin, T.L.; Lee, C.L.; Pan, Y.: An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization. Expert Syst. Appl. 36, 6108–6117 (2009). https://doi.org/10.1016/j.eswa.2008.07.043

    Article  Google Scholar 

  19. Kuo, I.H.; Horng, S.J.; Chen, Y.H.; Run, R.S.; Kao, T.W.; Chen, R.J.; Lai, J.L.; Lin, T.L.: Forecasting TAIFEX based on fuzzy time series and particle swarm optimization. Expert Syst. Appl. 37, 1494–1502 (2010). https://doi.org/10.1016/j.eswa.2009.06.102

    Article  Google Scholar 

  20. Cai, Q.; Zhang, D.; Zheng, W.; Leung, S.C.H.: A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression. Knowl. Based Syst. 74, 61–68 (2015). https://doi.org/10.1016/j.knosys.2014.11.003

    Article  Google Scholar 

  21. Lee, L.W.; Wang, L.H.; Chen, S.M.: Temperature prediction and TAIFEX forecasting based on fuzzy logical relationships and genetic algorithms. Expert Syst. Appl. 33, 539–550 (2007). https://doi.org/10.1016/j.eswa.2006.05.015

    Article  Google Scholar 

  22. Gupta, K.K.; Kumar, S.: Hesitant probabilistic fuzzy set based time series forecasting method. Granul. Comput. 4, 739–758 (2019). https://doi.org/10.1007/s41066-018-0126-1

    Article  Google Scholar 

  23. Bisht, K.; Kumar, S.: Fuzzy time series forecasting method based on hesitant fuzzy sets. Expert Syst. Appl. 64, 557–568 (2016). https://doi.org/10.1016/j.eswa.2016.07.044

    Article  Google Scholar 

  24. Pattanayak, R.M.; Behera, H.S.; Rath, R.K.: A higher order neuro-fuzzy time series forecasting model based on un-equal length of interval. In: International Conference on Application of Robotics in Industry Using Advanced Mechanisms, pp. 34–45 (2019)

  25. Sullivan, J.; Woodall, W.H.: A comparison of fuzzy forecasting and Markov modeling. Fuzzy Sets Syst. 64, 279–293 (1994). https://doi.org/10.1016/0165-0114(94)90152-X

    Article  Google Scholar 

  26. Chen, S.M.: Forecasting enrollments based on high-order fuzzy time series. Cybern. Syst. 33, 1–16 (2002). https://doi.org/10.1080/019697202753306479

    Article  MATH  Google Scholar 

  27. Egrioglu, E.; Aladag, C.H.; Yolcu, U.: Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks. Expert Syst. Appl. 40, 854–857 (2013). https://doi.org/10.1016/j.eswa.2012.05.040

    Article  Google Scholar 

  28. Huarng, K.; Yu, T.H.K.: The application of neural networks to forecast fuzzy time series. Phys. A Stat. Mech. Appl. 363, 481–491 (2006). https://doi.org/10.1016/j.physa.2005.08.014

    Article  Google Scholar 

  29. Pattanayak, R.M.; Behera, H.S.; Panigrahi, S.: A multi-step-ahead fuzzy time series forecasting by using hybrid chemical reaction optimization with pi-sigma higher-order neural network. In: Das, A., Nayak, J., Naik, B., Pati, S., Pelusi, D. (eds.) Computational Intelligence in Pattern Recognition, pp. 1029–1041. Springer, Singapore (2020)

    Chapter  Google Scholar 

  30. Pattanayak, R.M.; Behera, H.S.; Panigrahi, S.: A novel hybrid differential evolution-PSNN for fuzzy time series forecasting. In: Behera, H., Nayak, J., Naik, B., Pelusi, D. (eds.) Computational Intelligence in Data Mining, pp. 675–687. Springer, Singapore (2020)

    Chapter  Google Scholar 

  31. Yu, T.H.K.; Huarng, K.H.: A neural network-based fuzzy time series model to improve forecasting. Expert Syst. Appl. 37, 3366–3372 (2010). https://doi.org/10.1016/j.eswa.2009.10.013

    Article  Google Scholar 

  32. Yu, T.H.K.; Huarng, K.H.: A bivariate fuzzy time series model to forecast the TAIEX. Expert Syst. Appl. 34, 2945–2952 (2008). https://doi.org/10.1016/j.eswa.2007.05.016

    Article  Google Scholar 

  33. Aladag, C.H.: Using multiplicative neuron model to establish fuzzy logic relationships. Expert Syst. Appl. 40, 850–853 (2013). https://doi.org/10.1016/j.eswa.2012.05.039

    Article  Google Scholar 

  34. Aladag, C.H.; Egrioglu, E.; Yolcu, U.: Robust multilayer neural network based on median neuron model. Neural Comput. Appl. 24, 945–956 (2014). https://doi.org/10.1007/s00521-012-1315-5

    Article  Google Scholar 

  35. Aladag, C.H.; Yolcu, U.; Egrioglu, E.: A high order fuzzy time series forecasting model based on adaptive expectation and artificial neural networks. Math. Comput. Simul. (2010). https://doi.org/10.1016/j.matcom.2010.09.011

    Article  MathSciNet  MATH  Google Scholar 

  36. Aladag, C.H.; Basaran, M.A.; Egrioglu, E.; Yolcu, U.; Uslu, V.R.: Forecasting in high order fuzzy times series by using neural networks to define fuzzy relations. Expert Syst. Appl. 36, 4228–4231 (2009). https://doi.org/10.1016/j.eswa.2008.04.001

    Article  Google Scholar 

  37. Aladag, S.; Aladag, C.H.; Mentes, T.; Egrioglu, E.: A new seasonal fuzzy time series method based on the multiplicative neuron model and SARIMA. Hacettepe J. Math. Stat. 41, 337–345 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Bas, E.; Egrioglu, E.; Aladag, C.H.; Yolcu, U.: Fuzzy-time-series network used to forecast linear and nonlinear time series. Appl. Intell. 43, 343–355 (2015). https://doi.org/10.1007/s10489-015-0647-0

    Article  Google Scholar 

  39. Egrioglu, E.; Aladag, C.H.; Yolcu, U.; Uslu, V.R.; Basaran, M.A.: A new approach based on artificial neural networks for high order multivariate fuzzy time series. Expert Syst. Appl. 36, 10589–10594 (2009). https://doi.org/10.1016/j.eswa.2009.02.057

    Article  Google Scholar 

  40. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

    Book  Google Scholar 

  41. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  42. Misra, D.; Oommen, T.; Agarwal, A.; Mishra, S.K.; Thompson, A.M.: Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosyst. Eng. 103, 527–535 (2009). https://doi.org/10.1016/j.biosystemseng.2009.04.017

    Article  Google Scholar 

  43. Hyndman, R.; Yang, Y.: tsdl: Time Series Data Library. v0.1.0 (2018). https://pkg.yangzhuoranyang.com/tsdl/articles/tsdl.html. Accessed 1 Sept 2019

  44. TAIEX Total Index Historical Data. https://www.twse.com.tw/en/page/trading/indices/MI_5MINS_HIST.html. Accessed 1 Sept 2019

  45. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Hollander, M.; Wolfe, D.A.: Nonparametric Statistical Methods, p. 1999. Wiley, Hoboken (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattanayak, R.M., Panigrahi, S. & Behera, H.S. High-Order Fuzzy Time Series Forecasting by Using Membership Values Along with Data and Support Vector Machine. Arab J Sci Eng 45, 10311–10325 (2020). https://doi.org/10.1007/s13369-020-04721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04721-1

Keywords

Navigation