Skip to main content
Log in

Effect of Ethanol and Gasoline Blending on the Performance of a Stationary Small Single Cylinder Engine

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To reduce dependency on fossil fuel, alternative fuel may be considered either to replace fossil fuel or to improve the characteristics of fossil fuel. Ethanol is one of the alternative fuels that has been used as an additive to gasoline fossil fuel in many countries, particularly for spark ignition engine system. This research aims to investigate the effect of ethanol and gasoline blending on the performance of a non-road small single cylinder engine. Ethanol–gasoline blends of different concentrations are considered in this paper, to experimentally compare their performances, under varying engine speed but constant engine load. The experimental results showed that the addition of ethanol to gasoline has improved the overall engine performance. High ethanol–gasoline fuel blend (E40) is suitable for low engine speed, while low ethanol–gasoline fuel blend (E10) can replace the neat gasoline without modification as their performance is very identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

%:

Percentage

L:

Litres

°C:

Degree celsius

mm:

Millimetre

kg:

Kilograms

cm3 :

Cubic centimetre

kg/m3 :

Kilogram per cubic metre

kW:

Kilowatt

kJ/kg:

Kilojoules per kilogram

kJ/kg °C:

Kilojoules per kilogram degree celsius

MJ/kg:

Mega Joules per kilogram

Nm:

Newton metre

HP:

Horsepower

BHP:

Brake horsepower

rpm:

Revolution per minute

A:

Amperes

LPM:

Litre per hour

η v :

Volumetric efficiency

η t :

Thermal efficiency

η m :

Mechanical efficiency

\( \dot{W}_{\text{i}} \) :

Indicated power

Mtoe:

Million tonnes of oil equivalent

N c :

Number of cylinders

W imep :

Work done during power stroke (kJ/kg)

N m :

Engine speed (rpm)

n :

Number of revolution per cycle (four-stroke cycle, n = 2)

\( W_{3 - 4} \) :

Indicated work energy

Q in :

Heat energy supplied by the fuel (kJ/kg)

\( \dot{W}_{\text{b}} \) :

Brake power (kW)

\( m_{\text{air}} \) :

Mass flow rate of air into the cylinder (kg/s)

\( V_{{{\text{d}}1}} \) :

Displacement volume per cylinder (m3)

N :

Engine speed (rpm)

\( \rho_{\text{air}} \) :

Air density evaluated at atmospheric condition (1.181 kg/m3)

References

  1. Höök, M.; Li, J.; Johansson, K.; Snowden, S.: Growth rates of global energy systems and future outlooks. Nat. Resour. Res. 21(1), 23–41 (2012)

    Google Scholar 

  2. Jonker, J.G.G.; Junginger, H.M.; Verstagen, J.A.; Lin, T.; Rodriguez, L.F.; Ting, K.C.: Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil. Appl. Energy 173, 494–510 (2016)

    Google Scholar 

  3. Höök, M.; Tang, X.: Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52(Supplement C), 797–809 (2013)

    Google Scholar 

  4. Minutillo, M.; Perna, A.: A novel approach for treatment of CO2 from fossil fired power plants. Part B: the energy suitability of integrated tri-reforming power plants (ITRPPs) for methanol production. Int. J. Hydrog. Energy 35(13), 7012–7020 (2010)

    Google Scholar 

  5. International Energy Agency (IEA): Key World Energy Statistics. International Energy Agency (IEA), Paris (2017)

    Google Scholar 

  6. Agarwal, A.K.: Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. 33(3), 233–271 (2007)

    Google Scholar 

  7. Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.: A review on energy pattern and policy for transportation sector in Malaysia. Renew. Sustain. Energy Rev. 16(1), 532–542 (2012)

    Google Scholar 

  8. Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.: A review on emissions and mitigation strategies for road transport in Malaysia. Renew. Sustain. Energy Rev. 15(8), 3516–3522 (2011)

    Google Scholar 

  9. Chai, J.; Lu, Q.Y.; Wang, S.Y.; Lai, K.K.: Analysis of road transportation energy consumption demand in China. Transp. Res. D Transp. Environ. 48, 112–124 (2016)

    Google Scholar 

  10. Taylan, O.; Demirbas, A.: Forecasting and analysis of energy consumption for transportation in the Kingdom of Saudi Arabia. Energy Sources Part B 11(12), 1150–1157 (2016)

    Google Scholar 

  11. Zakharov, D.; Magaril, E.; Kozlov, P.: Reducing the energy consumption and increasing the efficiency of perishable goods transportation by refrigerated vehicles on urban routes. Int. J. Sustain. Dev. Plan. 12(7), 1192–1202 (2017)

    Google Scholar 

  12. Administration UEI: International Energy Statistics—Consumption of Motor Gasoline (Worldwide) (2015)

  13. Milano, J.; Ong, H.C.; Masjuki, H.H.; Chong, W.T.; Lam, M.K.; Loh, P.K.; et al.: Microalgae biofuels as an alternative to fossil fuel for power generation. Renew. Sustain. Energy Rev. 58, 180–197 (2016)

    Google Scholar 

  14. Clemente, R.C.; Werninghaus, E.; Coelho, E.P.D.; Sigaud Ferraz, L.A.: Development of an Internal Combustion Alcohol Fueled Engine. SAE International, Warrendale (2001)

    Google Scholar 

  15. Hsieh, W.-D.; Chen, R.-H.; Wu, T.-L.; Lin, T.-H.: Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels. Atmos. Environ. 36(3), 403–410 (2002)

    Google Scholar 

  16. Khuong, L.S.; Zulkifli, N.W.M.; Masjuki, H.H.; Mohamad, E.N.; Arslan, A.; Mosarof, M.H.; et al.: A review on the effect of bioethanol dilution on the properties and performance of automotive lubricants in gasoline engines. RSC Adv. 6(71), 66847–66869 (2016)

    Google Scholar 

  17. Shirazi, S.A.; Abdollahipoor, B.; Windom, B.; Reardon, K.F.; Foust, T.D.: Effects of blending C3–C4 alcohols on motor gasoline properties and performance of spark ignition engines: a review. Fuel Process. Technol. 197, 106194 (2020)

    Google Scholar 

  18. Aditiya, H.B.; Mahlia, T.M.I.; Chong, W.T.; Nur, H.; Sebayang, A.H.: Second generation bioethanol production: a critical review. Renew. Sustain. Energy Rev. 66, 631–653 (2016)

    Google Scholar 

  19. Costa, R.C.; Sodré, J.R.: Hydrous ethanol vs. gasoline–ethanol blend: engine performance and emissions. Fuel 89(2), 287–293 (2010)

    Google Scholar 

  20. Elfasakhany, A.: Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: performance and emissions analysis. J. Eng. Sci. Technol. 18(4), 713–719 (2015)

    Google Scholar 

  21. Iliev, S.: A comparison of ethanol and methanol blending with gasoline using a 1-D engine model. Procedia Eng. 100(Supplement C), 1013–1022 (2015)

    Google Scholar 

  22. Ganguly, A.; Chatterjee, P.K.; Dey, A.: Studies on ethanol production from water hyacinth—a review. Renew. Sustain. Energy Rev. 16(1), 966–972 (2012)

    Google Scholar 

  23. Giaconia, A.; Grena, R.; Lanchi, M.; Liberatore, R.; Tarquini, P.: Hydrogen/methanol production by sulfur–iodine thermochemical cycle powered by combined solar/fossil energy. Int. J. Hydrog. Energy 32(4), 469–481 (2007)

    Google Scholar 

  24. Guerrero, A.B.; Ballesteros, I.; Bllesteros, M.: The potential of agricultural banana waste for bioethanol production. Fuel 213, 176–185 (2018)

    Google Scholar 

  25. Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Sebayang, A.H.; Dharma, S.; Kusumo, F.; et al.: Evaluation of the engine performance and exhaust emissions of biodiesel–bioethanol–diesel blends using kernel-based extreme learning machine. Energy 159, 1075–1087 (2018)

    Google Scholar 

  26. Aditiya, H.B.; Chong, W.T.; Mahlia, T.M.I.; Sebayang, A.H.; Berawi, M.A.; Nur, H.: Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: a review. Waste Manag 47, 46–61 (2016)

    Google Scholar 

  27. Dharma, S.; Ong, H.C.; Masjuki, H.H.; Sebayang, A.H.; Silitonga, A.S.: An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines. Energy Convers. Manag. 128, 66–81 (2016)

    Google Scholar 

  28. Al-Hasan, M.: Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Energy Convers. Manag. 44(9), 1547–1561 (2003)

    Google Scholar 

  29. Koç, M.; Sekmen, Y.; Topgül, T.; Yücesu, H.S.: The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renew. Energy 34(10), 2101–2106 (2009)

    Google Scholar 

  30. Martínez, F.A.; Ganji, A.R.: Performance and exhaust emissions of a single-cylinder utility engine using ethanol fuel. SAE Technical Paper (2006)

  31. Sebayang, A.H.; Masjuki, H.H.; Ong, H.C.; Dharma, S.; Silitonga, A.S.; Kusumo, F.; et al.: Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Ind. Crop Prod. 97, 146–155 (2017)

    Google Scholar 

  32. Sebayang, A.H.; Masjuki, H.H.; Ong, H.C.; Dharma, S.; Silitonga, A.S.; Mahlia, T.M.I.; et al.: A perspective on bioethanol production from biomass as alternative fuel for spark ignition engine. RSC Adv. 6(18), 14964–14992 (2016)

    Google Scholar 

  33. Zaharin, M.S.M.; Abdullah, N.R.; Masjuki, H.H.; Ali, O.M.; Najafi, G.; Yusaf, T.: Evaluation on physicochemical properties of iso-butanol additives in ethanol–gasoline blend on performance and emission characteristics of a spark-ignition engine. Appl. Therm. Eng. 144, 960–971 (2018)

    Google Scholar 

  34. Lanzer, T.; von Meien, O.F.; Yamamoto, C.I.: A predictive thermodynamic model for the Brazilian gasoline. Fuel 84(9), 1099–1104 (2005)

    Google Scholar 

  35. Trop, P.; Anicic, B.; Goricanec, D.: Production of methanol from a mixture of torrefied biomass and coal. Energy 77, 125–132 (2014)

    Google Scholar 

  36. Brinkman, N.D.: Ethanol Fuel—Single—Cylinder Engine Study of Efficiency and Exhaust Emissions, pp. 1410–1424. SAE transactions, Warrendale (1981)

    Google Scholar 

  37. Yücesu, H.S.; Topgül, T.; Çinar, C.; Okur, M.: Effect of ethanol–gasoline blends on engine performance and exhaust emissions in different compression ratios. Appl. Therm. Eng. 26(17), 2272–2278 (2006)

    Google Scholar 

  38. Aditiya, H.B.; Sing, K.P.; Hanif, M.; Mahlia, T.M.I.: Effect of acid pretreatment on enzymatic hydrolysis in bioethanol production from rice straw. Int. J. Technol. 6(1), 3–10 (2015)

    Google Scholar 

  39. Hanif, M.; Mahlia, T.M.I.; Aditiya, H.B.; Bakar, M.S.A.: Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia. Biofuel Res. J. 4(1), 537–544 (2017)

    Google Scholar 

  40. Hossain, N.; Zaini, J.H.; Mahlia, T.M.I.: A review of bioethanol production from plant-based waste biomass by yeast fermentation. Int. J. Technol. 8(1), 5–18 (2017)

    Google Scholar 

  41. Sebayang, A.H.; Masjuki, H.H.; Ong, H.C.; Dharma, S.; Silitonga, A.S.; Kusumo, F.; et al.: Prediction of engine performance and emissions with Manihot glaziovii bioethanol–gasoline blended using extreme learning machine. Fuel 210, 914–921 (2017)

    Google Scholar 

  42. Elfasakhany, A.: Engine performance evaluation and pollutant emissions analysis using ternary bio-ethanol–iso-butanol–gasoline blends in gasoline engines. J. Clean. Prod. 139, 1057–1067 (2016)

    Google Scholar 

  43. Elfasakhany, A.; Mahrous, A.-F.: Performance and emissions assessment of n-butanol–methanol–gasoline blends as a fuel in spark-ignition engines. Alex. Eng. J. 55(3), 3015–3024 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the AAIBE Chair of Renewable Grant No: 201801 KETTHA for supporting this research. The authors also wish to express their appreciation to the Direktorat Jenderal Penguatan Riset dan Pengembangan Kementerian Riset dan Teknologi/Badan Riset dan Inovasi Nasional Republik Indonesia and Politeknik Negeri Medan, Medan, Indonesia. The authors wish to acknowledge Prof. T.M.I. Mahlia, Dr. Hwai Chyuan Ong and Dr. M. Mofijur for their support to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arridina Susan Silitonga, Jassinnee Milano or A. H. Sebayang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R.N., Silitonga, A.S., Shamsuddin, A.H. et al. Effect of Ethanol and Gasoline Blending on the Performance of a Stationary Small Single Cylinder Engine. Arab J Sci Eng 45, 5793–5802 (2020). https://doi.org/10.1007/s13369-020-04567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04567-7

Keywords

Navigation