Skip to main content
Log in

Effect of Egyptian Attapulgite Clay on the Properties of PVA-HES–Clay Nanocomposite Hydrogel Membranes for Wound Dressing Applications

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, attapulgite clay was extracted from North Western desert of Borg El-Arab, Egypt. The pristine clay was purified and treated before further use. The mineralogical composition of pristine clay was investigated by TEM, SEM, XRD and EDX analyses. Moreover, the pristine clay was organically modified with hexadecyl trimethyl ammonium chloride before incorporating into PVA-HES membranes. The modification of clay was also verified by FTIR, SEM and XRD analyses. Meanwhile, PVA-hydroxyethyl starch (PVA-HES/modified attapulgite clay) composite hydrogel membranes were fabricated by solution-casting method, where citric acid was utilized as cross-linker for formation of cross-linked membranes. The influence of addition of Egyptian modified attapulgite clay in ratios (0, 1.0, 3.0, 5.0, 7.0 and 10 wt%) on properties of PVA-HES composite membranes was studied in detail. Results revealed that the incorporation of modified attapulgite clay into membranes increased significantly the swelling ability and mechanical stability of composed hydrogel membranes. Also, the increase in clay contents in membranes showed antimicrobial activity against tested six pathogen strains and adequate hemolytic behavior, compared to clay-free membranes. These findings are referring to the capability of using of PVA-HES–attapulgite composite membrane as a good candidate for the purpose of super-absorbent dermal wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PVA:

Polyvinyl alcohol

HES:

Hydroxyethyl starch

CA:

Citric acid

HDTMA:

Hexadecyl trimethyl ammonium chloride

FTIR:

Fourier-transform infrared spectroscopy

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

EDX:

Energy-dispersive X-ray spectroscopy

TEM:

Transmission electron microscopy

SWR (%):

Swelling ratio percentage

References

  1. Kim, M.H.; Choi, G.; Elzatahry, A.; Vinu, A.; Choy, Y.; Choy, J.H.: Review of clay-drug hybrid materials for biomedical applications: administration routes. Clays Clay Miner. 64, 115–130 (2016)

    Article  Google Scholar 

  2. Jlassi, K.; Chehimi, M.M.; Thomas, S.: Clay–Polymer Nanocomposites, 1st edn. Elsevier, Amsterdam (2017)

    Google Scholar 

  3. Carretero, M.I.: Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 21, 155–163 (2002)

    Article  Google Scholar 

  4. Bradley, W.: The structural scheme of attapulgite. A Mineral. Earth Planet Mater. 25, 405–410 (1940)

    Google Scholar 

  5. Bergaya, F.; Lagaly, G.: Handbook of Clay Science, vol. 5, 2nd edn. Elsevier, Amsterdam (2013)

    Google Scholar 

  6. Ghrab, S.; Eloussaief, M.; Lambert, S.; Bouaziz, S.; Benzina, M.: Adsorption of terpenic compounds onto organo-palygorskite. Environ. Sci. Pollut. Res. 25, 18251–18262 (2018)

    Article  Google Scholar 

  7. Wang, W.; Wang, A.: Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Appl. Clay Sci. 119, 18–30 (2016)

    Article  Google Scholar 

  8. Ray, S.S.; Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater. Sci. 50, 962–1079 (2005)

    Article  Google Scholar 

  9. Campbell, F.C.: Fatigue and Fracture: Understanding the Basics. ASM International, Cleveland, OH (2012)

    Google Scholar 

  10. Pal, K.; Banthia, A.K.; Majumdar, D.K.: Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech 8, E142–E146 (2007)

    Article  Google Scholar 

  11. Kamoun, E.A.; Kenawy, E.R.S.; Chen, X.: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8, 217–233 (2017)

    Article  Google Scholar 

  12. Nasef, S.M.; Khozemy, E.E.; Kamoun, E.A.; El-Gendi, H.: Gamma radiation-induced crosslinked composite membranes based on polyvinyl alcohol/chitosan/AgNO3/vitamin E for biomedical applications. Int. J. Biol. Macromol. 137, 878–885 (2019)

    Article  Google Scholar 

  13. Rashed, M.A.: Calcrete on Pleistocene coastal ridges, west Alexandria, Egypt: sedimentary nature and applications. Sedimentol. Egypt 6, 113–128 (1998)

    Google Scholar 

  14. El-Shahat, A.: Quaternary D’une carbonates from the Mediterranean coast of Egypt: petrography and diagenesis. Facies 33, 265–275 (1995)

    Article  Google Scholar 

  15. El-asmar, H.M.; Wood, P.: Quaternary shoreline development: the northwestern coast of Egypt. Quat. Sci. Rev. 19, 1137–1149 (2000)

    Article  Google Scholar 

  16. Moore, D.M.; Reynolds, R.C.: X-Ray Diffraction and the Identification and Analysis of Clay Mineral, 2nd edn. Oxford University Press, Oxford (1997)

    Google Scholar 

  17. Poppe, L.J.; Paskevich, V.F.; Hathaway, J.C.; Blackwood, D.S.: A laboratory manual for X-ray powder diffraction. US Geol. Surv. Open-File. Rep. 1(041), 1–88 (2001)

    Google Scholar 

  18. Kamoun, E.A.; Menzel, H.: HES-HEMA nanocomposite polymer hydrogels: Swelling behavior and characterization. J. Polym. Res. 19, 9851 (2012)

    Article  Google Scholar 

  19. Vajanthri, K.Y.: PVA-Bentonite COMPOSITE for wound Dressing. National Institute of Technology Rourkela, Odisha (2014)

    Google Scholar 

  20. Kherroub, D.E.; Belbachir, M.; Lamouri, S.: Preparation and characterization of organophilic montmorillonite (12-maghnite) using Algerian clay. Orient. J. Chem. 30, 1647–1651 (2014)

    Article  Google Scholar 

  21. Huo, C.; Yang, H.: Synthesis and characterization of ZnO/palygorskite. Appl. Clay Sci. 50, 362–366 (2010)

    Article  Google Scholar 

  22. Dos Santos Soares, D.; Fernandes, C.S.; da Costa, A.C.S.; Raffin, F.N.; Acchar, W.; Moura, T.F.: Characterization of palygorskite clay from Piauí, Brazil and its potential use as excipient for solid dosage forms containing anti-tuberculosis drugs. J. Therm. Anal. Calorim. 113, 551–558 (2013)

    Article  Google Scholar 

  23. Boudriche, L.; Calvet, R.; Hamdi, B.; Balard, H.: Effect of acid treatment on surface properties evolution of attapulgite clay: An application of inverse gas chromatography. Colloids Surf. A Physicochem. Eng. Asp. 392, 45–54 (2011)

    Article  Google Scholar 

  24. Murray, H.H.: Applied Clay Mineralogy. Developments in Clay Sciences 2, 1st edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  25. Welton, J.E.: SEM Petrology Atlas. The American Association of Petroleum Geologists, Tulsa (2003)

    Google Scholar 

  26. Lu, L.; Li, X.Y.; Liu, X.Q.; Wang, Z.M.; Sun, L.B.: Enhancing the hydrostability and catalytic performance of metal-organic frameworks by hybridizing with attapulgite, a natural clay. J. Mater. Chem. A3, 6998–7005 (2015)

    Article  Google Scholar 

  27. Seetapan, N.; Anasuwan, N.; Kiatkamjornwong, S.: Superabsorbent polymer nanocomposites with surfactant- or acid-modified Ca-montmorillonite: synthesis and water absorbency. J. Polym. Res. 22, 1–8 (2015)

    Article  Google Scholar 

  28. Tan, L.; Tang, A.; Zou, Y.; Long, M.; Zhang, Y.; Ouyang, J.; Chen, J.: Sb2Se3assembling Sb2O3@ attapulgite as an emerging composites for catalytic hydrogenation of p-nitrophenol. Sci. Rep. 7, 1–11 (2017)

    Article  Google Scholar 

  29. Ltifi, I.; Ayari, F.; Hassen Chehimi, D.; Ayadi, M.: Study of the adsorption of bright green by a natural clay and modified. J. Mater. Sci. Eng. 6, 2169-0022 (2017)

    Google Scholar 

  30. Haraguchi, K.; Takehisa, T.: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 14, 1120–1124 (2002)

    Article  Google Scholar 

  31. Peng, L.; Liu, Y.; Gong, J.; Zhang, K.; Ma, J.: Continuous fabrication of multi-stimuli responsive graphene oxide composite hydrogel fibers by microfluidics. RSC Adv. 7, 19243–19249 (2017)

    Article  Google Scholar 

  32. Kamoun, E.A.; Omer, A.M.; Abu-Serie, M.M.; Khattab, S.N.; Ahmed, H.M.; Elbardan, A.A.: Photopolymer-ized PVA-g-GMA hydrogels for biomedical applications: factors affecting hydrogel formation and bioevaluation tests. Arab. J. Sci. Eng. 43, 3565–3575 (2018)

    Article  Google Scholar 

  33. Mai, Y.-W.; Yu, Z.-Z.: Polymer Nanocomposites. WOODHEAD Publishing Materials, CRC, Cambridge (2006)

    Book  Google Scholar 

  34. Fahmy, A.; Kamoun, E.A.; El-Eisawy, R.; El-Fakharany, E.M.; Taha, T.H.; El-Damhougy, B.K.; Abdelhai, F.: Poly(vinyl alcohol)-hyaluronic acid membranes for wound dressing applications: synthesis and in vitro bio-evaluations. J. Braz. Chem. Soc. 26, 1466–1474 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elbadawy A. Kamoun.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbassyoni, S., Kamoun, E.A., Taha, T.H. et al. Effect of Egyptian Attapulgite Clay on the Properties of PVA-HES–Clay Nanocomposite Hydrogel Membranes for Wound Dressing Applications. Arab J Sci Eng 45, 4737–4749 (2020). https://doi.org/10.1007/s13369-020-04501-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04501-x

Keywords

Navigation