Skip to main content
Log in

Adaptive Control of a Two-Link Flexible Manipulator Using a Type-2 Neural Fuzzy System

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a simple novel intelligent control scheme. The devised control scheme is a Takagi Sugeno Kang (TSK)- based type-2 neural fuzzy system (NFS) with a self-tuning mechanism optimized via a conjugate gradient (CG) method. Defuzzification phase of the NFS comprises T-norms rather than the conventional product–sum combination. The proposed control scheme is incorporated with a two-link flexible manipulator (TLFM), which belongs to the class of multi-body discrete/distributed, nonlinear, infinite-dimensional and highly coupled systems. The finite-dimensional model is acquired by using an assumed mode method (AMM). The truncated model has uncertainties, which makes it a difficult control problem. The control objective is to accomplish angular maneuvering of the TLFM links while regulating their intrinsic fluctuations. For an extensive analysis, the proposed control scheme is compared with a TSK model-based type-1 NFS and an adaptive proportional integral derivative (APID) control scheme. The simulation results demonstrate that the proposed control scheme exhibits better position tracking and vibration regulation capabilities compared to the other intelligent control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dwivedy, S.K.; Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Mahamood, R.M.; Pedro, J.O.: Hybrid pd/pid controller design for two-link flexible manipulators. In: Control Conference (ASCC), 2011 8th Asian, pp. 1358–1363. IEEE (2011)

  3. Ahmad, M.A.: Vibration and input tracking control of flexible manipulator using lqr with non-collocated pid controller. In: Computer Modeling and Simulation, 2008. EMS’08. Second UKSIM European Symposium on, pp. 40–45. IEEE (2008)

  4. Miyasato, Y.: Finite dimensional adaptive \(h\infty \) control for flexible arms preceded by input nonlinearites. In: Intelligent Control (ISIC), 2010 IEEE International Symposium on, pp. 2296–2301. IEEE (2010)

  5. Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, London (2005)

    Google Scholar 

  6. Hagan, M.T.; Demuth, H.B.; Beale, M.H.; De Jesús, O.: Neural Network Design, 2nd edn. Martin Hagan (2014). ISBN 9780971732117. https://books.google.com.tr/books?id=4EW9oQEACAAJ

  7. Passino, K.M.; Yurkovich, S.; Reinfrank, M.: Fuzzy control, vol. 20. Citeseer (1998)

  8. Li, Y.; Tong, S.; Li, T.: Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven dc motor via backstepping. Nonlinear Anal. Real World Appl. 14(1), 483–494 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Tinkir, M.; Önen, Ü.; Kalyoncu, M.: Modelling of neurofuzzy control of a flexible link. P. I. Mech. Eng. I J Sys. 224(5), 529–543 (2010)

    Google Scholar 

  10. Pedro, J.O.; Tshabalala, T.: Hybrid nnmpc/pid control of a two-link flexible manipulator with actuator dynamics. In: Control Conference (ASCC), 2015 10th Asian, pp. 1–6. IEEE (2015)

  11. Subudhi, B.; Morris, A.S.: Soft computing methods applied to the control of a flexible robot manipulator. Appl. Soft Comput. 9(1), 149–158 (2009)

    Google Scholar 

  12. Yahyaei, M.; Jam, J.; Hosnavi, R.: Controlling the navigation of automatic guided vehicle (agv) using integrated fuzzy logic controller with programmable logic controller (iflplc)–stage 1. Int. J. Adv. Manuf. Technol. 47(5–8), 795–807 (2010)

    Google Scholar 

  13. Su, K.H.; Huang, S.J.; Yang, C.Y.: Development of robotic grasping gripper based on smart fuzzy controller. Int. J. Fuzzy Syst. 17(4), 595–608 (2015)

    Google Scholar 

  14. Nguyen, V.; Morris, A.S.: Genetic algorithm tuned fuzzy logic controller for a robot arm with two-link flexibility and two-joint elasticity. J. Intell. Robot. 49(1), 3–18 (2007)

    Google Scholar 

  15. Castillo, O.; Amador-Angulo, L.; Castro, J.R.; Garcia-Valdez, M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354, 257–274 (2016)

    Google Scholar 

  16. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning–i. Inf. Sci. 8(3), 199–249 (1975)

    MathSciNet  MATH  Google Scholar 

  17. Khanesar, M.A.; Kayacan, E.; Teshnehlab, M.; Kaynak, O.: Analysis of the noise reduction property of type-2 fuzzy logic systems using a novel type-2 membership function. IEEE Trans. Syst. Man Cybern. B Cybern. 41(5), 1395–1406 (2011)

    Google Scholar 

  18. Hidalgo, D.; Melin, P.; Castillo, O.: An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms. Expert Syst. Appl. 39(4), 4590–4598 (2012)

    Google Scholar 

  19. Tung, S.W.; Quek, C.; Guan, C.: An evolving type-2 neural fuzzy inference system. In: Pacific Rim International Conference on Artificial Intelligence, pp. 535–546. Springer (2010)

  20. Juang, C.F.; Tsao, Y.W.: A type-2 self-organizing neural fuzzy system and its fpga implementation. IEEE Trans. Syst. Man Cybern. B Cybern. 38(6), 1537–1548 (2008)

    Google Scholar 

  21. Tai, K.; El-Sayed, A.R.; Biglarbegian, M.; Gonzalez, C.; Castillo, O.; Mahmud, S.: Review of recent type-2 fuzzy controller applications. Algorithms 9(2), 39 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Önen, Ü.; Kalyoncu, M.; Tinkir, M.; Botsali, F.M.: Application of adaptive neural network based interval type-2 fuzzy logic control on a nonlinear system. In: Computer Research and Development (ICCRD), 2011 3rd International Conference on, vol. 4, pp. 104–108. IEEE (2011)

  23. Juang, C.F.; Tsao, Y.W.: A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE T. Fuzzy Syst. 16(6), 1411–1424 (2008)

    Google Scholar 

  24. Abiyev, R.H.; Kaynak, O.: Type 2 fuzzy neural structure for identification and control of time-varying plants. IEEE Trans. Ind. Electron. 57(12), 4147–4159 (2010)

    Google Scholar 

  25. Juang, C.F.; Huang, R.B.; Lin, Y.Y.: A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing. IEEE T. Fuzzy Syst. 17(5), 1092–1105 (2009)

    Google Scholar 

  26. Lin, Y.Y.; Liao, S.H.; Chang, J.Y.; Lin, C.T.: Simplified interval type-2 fuzzy neural networks. IEEE Trans. Neural Netw. Learning Syst. 25(5), 959–969 (2014)

    Google Scholar 

  27. Farid, U.; Khan, B.; Ullah, Z.; Ali, S.; Mehmood, C.; Farid, S.; Sajjad, R.; Sami, I.; Shah, A.: Control and identification of dynamic plants using adaptive neuro-fuzzy type-2 strategy. In: 2017 International Conference on Energy Conservation and Efficiency (ICECE), pp. 68–73. IEEE (2017)

  28. Kumbasar, T.; Hagras, H.: A gradient descent based online tuning mechanism for pi type single input interval type-2 fuzzy logic controllers. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2015)

  29. Zhao, T.; Li, P.; Cao, J.: Self-organising interval type-2 fuzzy neural network with asymmetric membership functions and its application. Soft Comput. 23(16), 7215–7228 (2019)

    Google Scholar 

  30. Le, T.L.; Lin, C.M.; Huynh, T.T.: Self-evolving type-2 fuzzy brain emotional learning control design for chaotic systems using pso. Appl. Soft Comput. 73, 418–433 (2018)

    Google Scholar 

  31. Gao, J.; Yuan, R.; Yi, J.; Ying, H.; Li, C.: A novel approach to generating an interval type-2 fuzzy neural network based on a well-behaving type-1 fuzzy tsk system. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 003305–003311. IEEE (2016)

  32. Snyman, J.A.: Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Applied Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  33. Sotiropoulos, D.; Kostopoulos, A.; Grapsa, T.: A spectral version of perry’s conjugate gradient method for neural network training. In: Proceedings of 4th GRACM Congress on Computational Mechanics, vol. 1, pp. 291–298. Citeseer (2002)

  34. Beyhan, S.; Alci, M.: Extended fuzzy function model with stable learning methods for online system identification. INT. J. Adapt. Control 25(2), 168–182 (2011)

    MathSciNet  MATH  Google Scholar 

  35. De Luca, A.; Siciliano, B.: Closed-form dynamic model of planar multilink lightweight robots. IEEE Trans. Syst. Man Cybern. 21(4), 826–839 (1991)

    MathSciNet  Google Scholar 

  36. Subudhi, B.; Morris, A.S.: Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robot. Auton. Syst. 41(4), 257–270 (2002)

    MATH  Google Scholar 

  37. Meirovitch, L.: Elements of Vibration Analysis. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  38. Theodore, R.J.; Ghosal, A.: Comparison of the assumed modes and finite element models for flexible multilink manipulators. Int. J. Robot. Res. 14(2), 91–111 (1995)

    Google Scholar 

  39. Khairudin, M.; Mohamed, Z.; Husain, A.; Mamat, R.: Dynamic characterisation of a two-link flexible manipulator: theory and experiments. Adv. Robot. Res. 1(1), 61–79 (2014)

    Google Scholar 

  40. Fraser, A.R.; Daniel, R.W.: Perturbation Techniques for Flexible Manipulators, vol. 138. Springer, Berlin (2012)

    MATH  Google Scholar 

  41. Mitaim, S.; Kosko, B.: What is the best shape for a fuzzy set in function approximation? In: Fuzzy Systems, 1996., Proceedings of the Fifth IEEE International Conference on, vol. 2, pp. 1237–1243. IEEE (1996)

  42. Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. In: Readings in Fuzzy Sets for Intelligent Systems, pp. 387–403. Elsevier (1993)

  43. Sugeno, M.; Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1, 7 (1993)

    Google Scholar 

  44. Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)

    MATH  Google Scholar 

  45. Weber, S.: A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets Syst. 11(1–3), 115–134 (1983)

    MathSciNet  MATH  Google Scholar 

  46. Khan, L.; Khan, M.U.; Qamar, S.: Comparative analysis of suspension systems using adaptive fuzzy control. In: 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), vol. 1, pp. 22–27 (2012). https://doi.org/10.1109/ICIAS.2012.6306152

  47. Dong, X.L.; Liu, H.; Xu, Y.L.; Yang, X.M.: Some nonlinear conjugate gradient methods with sufficient descent condition and global convergence. Optim. Lett. 9(7), 1421–1432 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Hestenes, M.R.; Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems, vol. 49. NBS, Washington, DC (1952)

    MATH  Google Scholar 

  49. Dai, Y.H.; Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999)

    MathSciNet  MATH  Google Scholar 

  50. Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 11(2), 226–235 (1969)

    MathSciNet  MATH  Google Scholar 

  51. Dong, X.; Liu, H.; He, Y.: A self-adjusting conjugate gradient method with sufficient descent condition and conjugacy condition. J. Optim. Theory Appl. 165(1), 225–241 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Zoutendijk, G.: Nonlinear programming, computational methods. In: Integer and nonlinear programming, pp. 37–86 (1970)

    MATH  Google Scholar 

  53. Hager, W.W.; Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)

    MathSciNet  MATH  Google Scholar 

  54. Yuan, G.: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems. Optim. Lett. 3, 11–21 (2009)

    MathSciNet  MATH  Google Scholar 

  55. Dai, Zf; Tian, B.S.: Global convergence of some modified prp nonlinear conjugate gradient methods. Optim. Lett. 5(4), 615–630 (2011)

    MathSciNet  MATH  Google Scholar 

  56. Khan, L.; Qamar, S.; Khan, U.: Adaptive pid control scheme for full car suspension control. J. Chin. Inst. Eng. 39, 169–185 (2016)

    MathSciNet  Google Scholar 

  57. Dorf, R.C.; Bishop, R.H.: Modern Control Systems, 12th edn. Prentice Hall, Pearson (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umair Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Kara, T. Adaptive Control of a Two-Link Flexible Manipulator Using a Type-2 Neural Fuzzy System. Arab J Sci Eng 45, 1949–1960 (2020). https://doi.org/10.1007/s13369-020-04341-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04341-9

Keywords

Navigation