Skip to main content
Log in

Study on Dynamic Mechanical Properties and Meso-Deterioration Mechanism of Sandstone Under Cyclic Impact Load

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The laboratory experiment of the spilt Hopkinson pressure bar is carried out, and the cyclic load simulation is realized by a new method based on two-dimensional particle flow code (PFC2D) program. The dynamic damage and failure process of sandstone under cyclic impact load are further observed and analyzed from the view of mesoscopic scale. The results are as follows: (1) The numerical calculation method based on particle flow discrete element can effectively reproduce the Hopkinson bar impact compression experiment. (2) Under the cyclic impact load, the number of cracks in the specimens increases continuously, showing the effect on mechanical properties such as strength deterioration, elastic modulus reduction and peak strain increase. The number of cracks increases sharply at the moment of failure, and the peak strain and elastic modulus change significantly. (3) Along with the increase in cycle numbers of impact load, the failure modes of sandstone specimens develop from the mode of local meso-cracks at the end of the specimen and a small amount of rock debris to axial splitting failure mode dominated by main meso-cracks and extended from the end to the middle of the specimen. Compared with impact test with high strain rate, the failure evolution trend of sandstone specimens with axial preferential development of main meso-cracks is more significant. (4) The dynamic deterioration characteristics and evolution laws of meso-cracks in rock under cyclic impact load, such as nucleation, propagation, connectivity and interaction, are studied using PFC2D program, making up the shortcomings of laboratory experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Xu, J.; Lu, X.; Zhang, J.; Wang, Z.; Bai, E.: Research on energy properties of rock cyclical impact damage under confining pressure. Chin. J. Rock Mech. Eng. 29(S2), 4159–4165 (2010). (in Chinese)

    Google Scholar 

  2. Ali, S.; Kamran, E.; Bibhu, M.: Degradation of a discrete infilled joint shear strength subjected to repeated blast-induced vibrations. Int. J. Min. Sci. Technol. 28(4), 23–33 (2018). (in Chinese)

    Google Scholar 

  3. Meglis, I.L.; Chow, T.; Martin, C.D.; Young, R.P.: Assessing in situ microcrack damage using ultrasonic velocity tomography. Int. J. Rock Mech. Min. Sci. 42(1), 25–34 (2005). https://doi.org/10.1016/j.ijrmms.2004.06.002

    Article  Google Scholar 

  4. Hamid, N.H.; Anuar, S.A.; Awang, H.; Kori, M.E.: Experimental study on seismic behavior of repaired tunnel form building under cyclic loading. Asian J. Civ. Eng. 19(1), 1–12 (2018). https://doi.org/10.1007/s42107-018-0032-5

    Article  Google Scholar 

  5. Lin, D.; Chen, S.: Experimental Study on damage evolution law of rock under cyclical impact Loadings. Chin. J. Rock Mechan. Eng. 24(22), 4094–4098 (2004). (in Chinese)

    Google Scholar 

  6. Jafari, M.K.; Hosseini, K.A.; Pellet, F.; Boulon, M.: Buzzi, O: evaluation of shear strength of rock joints subjected to cyclic loading. Soil Dyn. Earthq. Eng. 23(7), 619–630 (2003). https://doi.org/10.1016/S0267-7261(03)00063-0

    Article  Google Scholar 

  7. Kumar, S.S.; Krishna, A.M.; Dey, A.: Evaluation of dynamic properties of sandy soil at high cyclic strains. Soil Dyn. Earthq. Eng. 99(1), 157–167 (2017). https://doi.org/10.1016/j.soildyn.2017.05.016

    Article  Google Scholar 

  8. Bayraktar, A.; Türker, T.; Tadla, J.; Altok, K.; Arif, E.: Static and dynamic field load testing of the long span Nissibi cable-stayed bridge. Soil Dyn. Earthq. Eng. 94(6), 136–157 (2017). https://doi.org/10.1016/j.soildyn.2017.01.019

    Article  Google Scholar 

  9. Ramulu, M.; Chakraborty, A.K.; Sitharam, T.G.: Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project: a case study. Tunn. Undergr. Space Technol. 24(2), 208–221 (2009). https://doi.org/10.1016/j.tust.2008.08.002

    Article  Google Scholar 

  10. Yang, J.H.; Lu, W.B.; Hu, Y.G.; Chen, M.; Yan, P.: Numerical simulation of rock mass damage evolution during deep-buried tunnel excavation by drill and blast. Rock Mech. Rock Eng. 48(5), 2045–2059 (2015). https://doi.org/10.1007/s00603-014-0663-0

    Article  Google Scholar 

  11. Yan, C.; Xiao, X.; Lei, H.: Identifying the impact factors of the dynamic strength of mudded intercalations during cyclic loading. Adv. Civ. Eng. 28(1), 1–9 (2018). https://doi.org/10.1155/2018/5805294

    Article  Google Scholar 

  12. Zhu, J.; Li, X.; Gong, F.Q.; Wang, S.: Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads. Chin. J. Geotech. Eng. 35(3), 531–539 (2013). (in Chinese)

    Google Scholar 

  13. Li, D.; Sun, X.; Zhou, Z.; Cai, X.; Qiu, J.: Dynamic cumulative damage characteristics of granite under multiple impact loads. J. Experim. Mech. 31(6), 827–835 (2016). (in Chinese)

    Google Scholar 

  14. Kang, D.; Wei, W.; Yee, K.C.: Discrete element modelling of stress-induced instability of directional drilling boreholes in anisotropic rock. Tunn. Undergr. Space Technol. 81(11), 55–67 (2018). https://doi.org/10.1016/j.tust.2018.07.001

    Article  Google Scholar 

  15. Zhang, M.; Liang, L.; Liu, X.: Impacts of rock anisotropy on horizontal wellbore stability in shale reservoir. Appl. Math. Mech. 38(3), 295–305 (2017). https://doi.org/10.21656/1000-0887.370155

    Article  Google Scholar 

  16. Chehreghani, S.; Noaparast, M.; Rezai, B.; Shafaei, S.Z.: Bonded-particle model calibration using response surface methodology. Particuology 32(1), 141–152 (2017). https://doi.org/10.1016/j.partic.2016.07.012

    Article  Google Scholar 

  17. Park, J.W.; Song, J.J.: Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int. J. Rock Mech. Min. Sci. 46(8), 1315–1328 (2009). https://doi.org/10.1016/j.ijrmms.2009.03.007

    Article  Google Scholar 

  18. Yang, X.X.; Kulatilake, P.H.S.W.: Effect of joint micro mechanical parameters on a jointed rock block behavior adjacent to an underground excavation: a particle flow approach. Geotech. Geol. Eng. 37(1), 431–453 (2019). https://doi.org/10.1007/s10706-018-0621-9

    Article  Google Scholar 

  19. Li, W.; Zhou, X.; Carey, J.W.; Frash, L.P.; Cusatis, G.: Multiphysics lattice discrete particle modeling (M-LDPM) for the simulation of shale fracture permeability. Rock Mech. Rock Eng. 51(12), 3963–3981 (2018). https://doi.org/10.1007/s00603-018-1625-8

    Article  Google Scholar 

  20. Xu, X.; Wu, S.; Gao, Y.; Xu, M.: Effects of micro-structure and micro-parameters on Brazilian tensile strength using flat-joint model. Rock Mech. Rock Eng. 49(9), 3575–3595 (2016). https://doi.org/10.1007/s00603-016-1021-1

    Article  Google Scholar 

  21. Cao, R.H.; Cao, P.; Lin, H.; Ma, G.W.; Fan, X.: Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: experimental studies and particle mechanics approach. Arch. Civ. Mech. Eng. 18(1), 198–214 (2018). https://doi.org/10.1016/j.acme.2017.06.010

    Article  Google Scholar 

  22. Jie, L.; Wang, J.: Stress evolution of rock-like specimens containing a single fracture under uniaxial loading: a numerical study based on particle flow code. Geotech. Geol. Eng. 36(1), 1–14 (2017). https://doi.org/10.1007/s10706-017-0347-0

    Article  Google Scholar 

  23. He, J.; Li, X.; Li, S.; Yin, Y.; Qian, H.: Study of seismic response of colluvium accumulation slope by particle flow code. Granular Matter 12(5), 483–490 (2010). https://doi.org/10.1007/s10035-010-0213-8

    Article  Google Scholar 

  24. Yuan, W.; Wang, W.; Su, X.; Li, J.; Li, Z.; Wen, L.: Numerical study of the impact mechanism of decoupling charge on blasting-enhanced permeability in low-permeability sandstones. Int. J. Rock Mech. Min. Sci. 106(1), 300–310 (2018). https://doi.org/10.1016/j.ijrmms.2018.04.029

    Article  Google Scholar 

  25. Jong, Y.H.; Lee, C.I.: Numerical simulation of fracture mechanism by blasting using PFC2D. Tunnel Undergr. Space 16(6), 476–485 (2006)

    Google Scholar 

  26. Wang, D.R.; Liu, Z.Y.; Liu, J.G.; Song, C.M.: Analysis of dynamic properties and energy dissipation of sandstone and granite. Trans. Beijing Ins. Technol. 37(12), 1217–1223 (2017). https://doi.org/10.15918/j.tbit1001-0645.2017.12.002

    Article  Google Scholar 

  27. Li, X.; Zou, Y.; Zhou, Z.: Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method. Rock Mech. Rock Eng. 47(5), 1693–1709 (2014). https://doi.org/10.1007/s00603-013-0484-6

    Article  Google Scholar 

  28. Hamdia, K.M.; Msekh, M.A.; Silani, M.; Thai, T.Q.; Budarapu, P.R.; Rabczuk, T.: Assessment of computational fracture models using bayesian method. Eng. Fract. Mech. 205(1), 387–398 (2019). https://doi.org/10.1016/j.engfracmech.2018.09.019

    Article  Google Scholar 

  29. Yang, B.; Jiao, Y.: A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng. Comput. 23(6), 607–631 (2006). https://doi.org/10.1108/02644400610680333

    Article  MATH  Google Scholar 

  30. Cundall, P.A.: Formulation of a three-dimensional distinct element model. I: A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. 25(6), 107–116 (1988). https://doi.org/10.1016/0148-9062(88)92294-2

    Article  Google Scholar 

  31. Shi, C.: Numerical simulation of particle flow (PFC5.0) and its application, pp. 353–355. China Architecture and Building Press, Beijing (2018)

    Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (Project No. 51774222), the National Natural Science Foundation of China (Project No. 51779197), the Natural Science Foundation of Hubei province, China (Grant No. 2017CFB508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Luo, Y., Li, X. et al. Study on Dynamic Mechanical Properties and Meso-Deterioration Mechanism of Sandstone Under Cyclic Impact Load. Arab J Sci Eng 45, 3863–3875 (2020). https://doi.org/10.1007/s13369-019-04296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04296-6

Keywords

Navigation