Skip to main content
Log in

Power Quality Events Recognition Using S-Transform and Wild Goat Optimization-Based Extreme Learning Machine

  • Research Article - -Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a novel approach for automatic power quality (PQ) event detection and classification based on Stockwell transform (S-transform) and wild goat optimization (WGO)-tuned extreme learning machine (ELM). The distinctive features associated with PQ event signals have been extracted by S-transform to obtain the feature vectors characterizing the signal nature. Considering these feature vectors as input, a classifier based on ELM optimally tuned with modified WGO technique is proposed. The WGO technique originated from the social hierarchy and strategic planning to reach at peak by the wild goats in nature is adapted to formulate an effective ELM model by parameter tuning for better classification. To justify the enhanced performance of the proposed approach, it is tested on a wide range of extracted synthetic PQ event data by MATLAB simulation. To ensure the real-time implementation, the PQ event data with the addition of 20, 30, and 50 dB to the synthetic signals are considered. The analysis of results presented reveals a very high performance for both PQ event recognition and classification, ensuring the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

w(d, t):

Width of the wavelet

d :

Scale parameter

f :

Frequency

S(t, f):

Stockwell transform

h(kT):

Disturbance signal

T :

Sampling time interval

N :

Number of samples

n :

Number of input neurons

l :

Number of hidden neurons

m :

Number of output neurons

h :

Hidden layer output

G(x):

Hidden layer activation function

a :

Weight matrix between input neuron and hidden neuron

β :

Weight matrix between input neuron and hidden neuron

b :

Weight of hidden neuron bias

H :

Output matrix of the hidden layer

H + :

Moore–Penrose inverse of the matrix H

wgij :

Population matrix

N wg :

Number of wild goats

N var :

Number of variables

WT:

Weight of each wg

N l :

Number of leaders

N f :

Number of followers

N g :

Number of groups

GR:

Group of wild goats

vv :

Movement vectors

P lbest :

Best leader wight value

w :

Inertia weight

R :

Personal learning coefficient

c, d :

Auxiliary parameters

wg:

Wild goat

k :

Index of the group

WTG :

Group weight value

m :

Mutation percentage

m’ :

Ratio of the current-generation iteration number to the maximum iteration number

MPi :

Total number of misclassified patterns

CL:

Class

f s :

Sampling frequency

PQ:

Power quality

WGO:

Wild goat optimization

ELM:

Extreme learning machine

STFT:

Short-time Fourier Transform

WT:

Wavelet transform

GT:

Gabor–Wigner transform

HHT:

Hilbert–Huang transform

EMD:

Empirical mode decomposition

IMF:

Intrinsic mode decomposition

HT:

Hilbert transform

VMD:

Variable mode decomposition

MM:

Mathematical morphology

AI:

Artificial intelligence

NN:

Neural network

SVM:

Support vector machine

FL:

Fuzzy logic

MP:

Moore–Penrose

WGOELM:

Wild goat optimization-based extreme learning machine

CWT:

Continuous wavelet transform

STA:

Stockwell transform amplitude

SLFN:

Single-hidden layer feed-forward neural network

EM:

Electromagnetism

PQE:

Power quality events

TF:

Time–frequency

Fstd:

Frequency standard deviation

THD:

Total harmonics distortion

ST:

Stockwell transform

SRP:

Success rate percentage

TmA:

Time–maximum amplitude

FmA:

Frequency–maximum amplitude

References

  1. Mahela, O.P.; Shaik, A.G.; Gupta, N.: A critical review of detection and classification of power quality events. Renew. Sustain. Energy Rev. 41, 495–505 (2015)

    Article  Google Scholar 

  2. Granados-Lieberman, D.; Romero-Troncoso, R.J.; Osornio-Rios, R.A.; Garcia-Perez, A.; Cabal-Yepez, E.: Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review. IET Gener. Transm. Distrib. 5(4), 519–529 (2011)

    Article  Google Scholar 

  3. Mishra, M.: Power quality disturbance detection and classification using signal processing and soft computing techniques: a comprehensive review. Int. Trans. Electr. Energy Syst. 29(8), e12008 (2019). https://doi.org/10.1002/2050-7038.12008

    Article  Google Scholar 

  4. Saini, M.K.; Kapoor, R.: Classification of power quality events—a review. Int. J. Electr. Power Energy Syst. 43(1), 11–19 (2012)

    Article  Google Scholar 

  5. Burriel-Valencia, J.; Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Pineda-Sanchez, M.: Short-frequency Fourier transform for fault diagnosis of induction machines working in transient regime. IEEE Trans. Instrum. Meas. 66(3), 432–440 (2017)

    Article  Google Scholar 

  6. De Yong, D.; Bhowmik, S.; Magnago, F.: An effective power quality classifier using wavelet transform and support vector machines. Expert Syst. Appl. 42(15–16), 6075–6081 (2015)

    Article  Google Scholar 

  7. Hu, G.; Li, R.; Zheng, J.; Tao, L.: Power quality disturbance based on Gabor-Wigner transform. J. Inf. Comput. Sci. 12(1), 329–337 (2015)

    Article  Google Scholar 

  8. Peng, L.I.; Jing, G.A.O.; Duo, X.U.; Chang, W.A.N.G.; Xavier, Y.A.N.G.: Hilbert-Huang transform with adaptive waveform matching extension and its application in power quality disturbance detection for microgrid. J. Mod. Power Syst. Clean Energy 4(1), 19–27 (2016)

    Article  Google Scholar 

  9. Sahani, M.; Dash, P.K.: Automatic power quality events recognition based on Hilbert Huang transform and weighted bidirectional extreme learning machine. IEEE Trans. Ind. Inf. 14(9), 3849–3858 (2018)

    Article  Google Scholar 

  10. Sahani, M.; Dash, P.K.: FPGA-based online power quality disturbances monitoring using reduced-sample HHT and class-specific weighted RVFLN. IEEE Trans. Ind. Inf. 15(8), 4614–4623 (2019)

    Article  Google Scholar 

  11. Camarena-Martinez, D.; Valtierra-Rodriguez, M.; Perez-Ramirez, C.A.; Amezquita-Sanchez, J.P.; de Jesus Romero-Troncoso, R.; Garcia-Perez, A.: Novel downsampling empirical mode decomposition approach for power quality analysis. IEEE Trans. Ind. Electron. 63(4), 2369–2378 (2015)

    Article  Google Scholar 

  12. Babu, N.R.; Mohan, B.J.: Fault classification in power systems using EMD and SVM. Ain Shams Eng. J. 8(2), 103–111 (2017)

    Article  Google Scholar 

  13. Liu, Z.; Cui, Y.; Li, W.: A classification method for complex power quality disturbances using EEMD and rank wavelet SVM. IEEE Trans. Smart Grid 6(4), 1678–1685 (2015)

    Article  Google Scholar 

  14. Achlerkar, P.D.; Samantaray, S.R.; Manikandan, M.S.: Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid-connected distributed generation system. IEEE Trans. Smart Grid 9(4), 3122–3132 (2016)

    Article  Google Scholar 

  15. Sahani, M.; Dash, P.K.: Variational mode decomposition and weighted online sequential extreme learning machine for power quality event patterns recognition. Neurocomputing 310, 10–27 (2018)

    Article  Google Scholar 

  16. Chen, Q.; Cai, W.: A algorithm of VMD for the detection of APF harmonics. In: 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 1260–1263. IEEE. (2017)

  17. Saputra, I.D.; Smith, J.S.; Jiang, L.; Wu, Q.H.: Detection and classification of power disturbances using half multi-resolution morphology gradient. In: 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1–5. IEEE. (2016)

  18. Igna, D.S.; Smith, J.S.; Wu, Q.H.: Detection of power disturbances using Mathematical Morphology on small data windows. In: 2016 39th International Conference on Telecommunications and Signal Processing (TSP), pp. 211–214. IEEE. (2016)

  19. Mishra, M.; Panigrahi, R.R.; Rout, P.K.: A combined mathematical morphology and extreme learning machine techniques based approach to micro-grid protection. Ain Shams Eng. J. 10(2), 307–318 (2019)

    Article  Google Scholar 

  20. Stockwell, R.G.; Mansinha, L.; Lowe, R.P.: Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)

    Article  Google Scholar 

  21. Stockwell, R.G.: A basis for efficient representation of the S-transform. Digital Signal Process. 17(1), 371–393 (2007)

    Article  Google Scholar 

  22. Ventosa, S.; Simon, C.; Schimmel, M.; Dañobeitia, J.J.; Mànuel, A.: The S-transform from a wavelet point of view. IEEE Trans. Signal Process. 56(7), 2771–2780 (2008)

    Article  MathSciNet  Google Scholar 

  23. Liu, R.; Yang, B.; Zio, E.; Chen, X.: Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 108, 33–47 (2018)

    Article  Google Scholar 

  24. Gu, X.; Angelov, P.P.: Self-organising fuzzy logic classifier. Inf. Sci. 447, 36–51 (2018)

    Article  Google Scholar 

  25. Tang, J.; Deng, C.; Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2015)

    Article  MathSciNet  Google Scholar 

  26. Ding, S.; Zhao, H.; Zhang, Y.; Xu, X.; Nie, R.: Extreme learning machine: algorithm, theory and applications. Artif. Intell. Rev. 44(1), 103–115 (2015)

    Article  Google Scholar 

  27. Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 42(2), 513–529 (2011)

    Article  Google Scholar 

  28. Shefaei, A.; Mohammadi-Ivatloo, B.: Wild goats algorithm: an evolutionary algorithm to solve the real-world optimization problems. IEEE Trans. Ind. Inf. 14(7), 2951–2961 (2017)

    Article  Google Scholar 

  29. Xue, B.; Ma, X.; Gu, J.; Li, Y.: An improved extreme learning machine based on variable-length particle swarm optimization. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1030–1035. IEEE. (2013)

  30. Alshamiri, A.K.; Singh, A.; Surampudi, B.R.: Artificial bee colony algorithm for clustering: an extreme learning approach. Soft. Comput. 20(8), 3163–3176 (2016)

    Article  Google Scholar 

  31. Ray, P.; Budumuru, G.K.; Mohanty, B.K.: A comprehensive review on soft computing and signal processing techniques in feature extraction and classification of power quality problems. J. Renew. Sustain. Energy 10(2), 025102 (2018)

    Article  Google Scholar 

  32. Erişti, H.; Yıldırım, Ö.; Erişti, B.; Demir, Y.: Automatic recognition system of underlying causes of power quality disturbances based on S-Transform and Extreme Learning Machine. Int. J. Electr. Power Energy Syst. 61, 553–562 (2014)

    Article  Google Scholar 

  33. Mishra, S.; Bhende, C.N.; Panigrahi, B.K.: Detection and classification of power quality disturbances using S-transform and probabilistic neural network. IEEE Trans. Power Deliv. 23(1), 280–287 (2007)

    Article  Google Scholar 

  34. Wang, H.; Wang, P.; Liu, T.: Power quality disturbance classification using the S-transform and probabilistic neural network. Energies 10(1), 107 (2017)

    Article  Google Scholar 

  35. Huang, N.; Lu, G.; Cai, G.; Xu, D.; Xu, J.; Li, F.; Zhang, L.: Feature selection of power quality disturbance signals with an entropy-importance-based random forest. Entropy 18(2), 44 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Sekhar Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, I.S., Rout, P.K. & Mishra, S. Power Quality Events Recognition Using S-Transform and Wild Goat Optimization-Based Extreme Learning Machine. Arab J Sci Eng 45, 1855–1870 (2020). https://doi.org/10.1007/s13369-019-04289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04289-5

Keywords

Navigation