Skip to main content
Log in

Single and Multiple Copy–Move Forgery Detection and Localization in Digital Images Based on the Sparsely Encoded Distinctive Features and DBSCAN Clustering

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the advancements in digital image processing and multimedia devices, the digital image can be easily tampered and presented as evidence in judicial courts, print media, social media, and for insurance claims. The most commonly used image tampering technique is the copy-move forgery (CMF) technique, where the region from the original image is copied and pasted in some other part of the same image to manipulate the original image content. The CMFD techniques may not provide robust performance after various post-processing attacks and multiple forged regions within the images. This article introduces a robust CMF detection technique to mitigate the aforementioned problems. The proposed CMF detection technique utilizes a fusion of speeded up robust features (SURF) and binary robust invariant scalable keypoints (BRISK) descriptors for CMF detection. The SURF features are robust against different post-processing attacks such as rotation, blurring, and additive noise. However, the BRISK features are considered as robust in the detection of the scale-invariant forged regions as well as poorly localized keypoints of the objects within the forged image. The fused features are matched using hamming distance and second nearest neighbor. The matched features grouped into clusters by applying density-based spatial clustering of applications with noise clustering algorithm. The random sample consensus technique is applied to the clusters to remove the remaining false matches. After some post-processing, the forged regions are detected and localized. The performance of the proposed CMFD technique is assessed using three standard datasets (i.e., CoMoFoD, MICC-F220, and MICC-F2000). The proposed technique surpasses the state-of-the-art techniques used for CMF detection in terms of true and false detection rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Availability of Data and Material

Please contact the authors for data requests.

References

  1. Kessler, G.C.: An overview of steganography for the computer forensics examiner. Forensic Sci. Commun. 6(3), 1–27 (2004)

    MathSciNet  Google Scholar 

  2. Nilizadeh, A.; Nilchi, A.R.N.: A novel steganography method based on matrix pattern and LSB algorithms in RGB images. In: 2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), Bam, Iran 2016, pp. 154–159. IEEE (2016)

  3. Nilizadeh, A.; Mazurczyk, W.; Zou, C.; Leavens, G.T.: Information hiding in RGB images using an improved matrix pattern approach. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA 2017, pp. 1407–1415. IEEE (2017)

  4. Rehman, A.; Saba, T.; Mahmood, T.; Mehmood, Z.; Shah, M.; Anjum, A.: Data hiding technique in steganography for information security using number theory. J. Inf. Sci. (2018). https://doi.org/10.1177/0165551518816303

    Article  Google Scholar 

  5. Cox, I.J.; Miller, M.L.; Bloom, J.A.; Honsinger, C.: Digital Watermarking, vol. 53. Springer, Berlin (2002)

    Google Scholar 

  6. Nikolaidis, N.; Pitas, I.: Digital image watermarking: an overview. In: Proceedings IEEE International Conference on Multimedia Computing and Systems, Florence, Italy 1999, pp. 1–6. IEEE (1999)

  7. Belk, R.W.: Extended self in a digital world. J. Consum. Res. 40(3), 477–500 (2013). https://doi.org/10.1086/671052

    Article  Google Scholar 

  8. Qureshi, M.A.: A bibliography of pixel-based blind image forgery detection techniques. Sig. Process. Image Commun. 39, 46–74 (2015)

    Article  Google Scholar 

  9. Asghar, K.; Habib, Z.; Hussain, M.: Copy-move and splicing image forgery detection and localization. Aust. J. Forensic Sci. 49, 281–307 (2017)

    Article  Google Scholar 

  10. Tralic, D.; Zupancic, I.; Grgic, S.; Grgic, M.: CoMoFoD—new database for copy-move forgery detection. In: ELMAR, 2013 55th international symposium, Zadar, Croatia 2013, pp. 49–54. IEEE (2013)

  11. Christlein, V.; Riess, C.; Jordan, J.; Riess, C.; Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. Inf. Forensics Secur. IEEE Trans. 7, 1841–1854 (2012)

    Article  Google Scholar 

  12. Muhammad, G.; Al-Hammadi, M.H.; Hussain, M.; Bebis, G.: Image forgery detection using steerable pyramid transform and local binary pattern. Mach. Vis. Appl. 25, 985–995 (2014)

    Article  Google Scholar 

  13. Hayat, K.; Qazia, T.: Forgery detection in digital images via discrete wavelet and discrete cosine transforms. Comput. Electr. Eng. 62, 448–458 (2017)

    Article  Google Scholar 

  14. Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  15. Bo, X.; Junwen, W.; Guangjie, L.; Yuewei, D.: Image copy-move forgery detection based on SURF. In: 2010 International Conference on Multimedia Information Networking and Security, Nanjing, Jiangsu, China 2010, pp. 889–892. IEEE (2010)

  16. Pandey, R.C.; Singh, S.K.; Shukla, K.; Agrawal, R.: Fast and robust passive copy-move forgery detection using SURF and SIFT image features. In: 2014 9th International conference on industrial and information systems (ICIIS), Gwalior, India 2014, pp. 1–6. IEEE (2014)

  17. Leutenegger, S.; Chli, M.; Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision (ICCV), 2011, pp. 2548–2555. IEEE (2011)

  18. Silva, E.; Carvalho, T.; Ferreira, A.; Rocha, A.: Going deeper into copy-move forgery detection: exploring image telltales via multi-scale analysis and voting processes. J. Vis. Commun. Image Represent. 29(5), 16–32 (2015). https://doi.org/10.1016/j.jvcir.2015.01.016

    Article  Google Scholar 

  19. Mahmood, T.; Mehmood, Z.; Shah, M.; Khan, Z.: An efficient forensic technique for exposing region duplication forgery in digital images. Appl. Intell. 48(7), 1791–1801 (2018). https://doi.org/10.1007/s10489-017-1038-5

    Article  Google Scholar 

  20. Mahmood, T.; Mehmood, Z.; Shah, M.; Saba, T.: A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform. J. Vis. Commun. Image Represent. 53(5), 202–214 (2018). https://doi.org/10.1016/j.jvcir.2018.03.015

    Article  Google Scholar 

  21. Mahmood, T.; Irtaza, A.; Mehmood, Z.; Mahmood, M.T.: Copy–move forgery detection through stationary wavelets and local binary pattern variance for forensic analysis in digital images. Forensic Sci. Int. 279(10), 8–21 (2017). https://doi.org/10.1016/j.forsciint.2017.07.037

    Article  Google Scholar 

  22. Mahmood, T.; Nawaz, T.; Mehmood, Z.; Khan, Z.; Shah, M.; Ashraf, R.: Forensic analysis of copy-move forgery in digital images using the stationary wavelets. In: 2016 6th International Conference on Innovative Computing Technology (INTECH), Dublin, Ireland 2016, pp. 578–583. IEEE (2016)

  23. Mahmood, T.; Nawaz, T.; Ashraf, R.; Shah, M.; Khan, Z.; Irtaza, A.; Mehmood, Z.: A survey on block based copy move image forgery detection techniques. In: 2015 International Conference on Emerging Technologies (ICET), Peshawar, Pakistan 2015, pp. 1–6. IEEE (2015)

  24. Fridrich, A.J.; Soukal, B.D.; Lukáš, A.J.: Detection of copy-move forgery in digital images. In: in Proceedings of Digital Forensic Research Workshop 2003. Citeseer (2003)

  25. Lin, H.-J.; Wang, C.-W.; Kao, Y.-T.: Fast copy-move forgery detection. WSEAS Trans. Signal Process. 5(5), 188–197 (2009)

    Google Scholar 

  26. Ardizzone, E.; Bruno, A.; Mazzola, G.: Copy–move forgery detection by matching triangles of keypoints. IEEE Trans. Inf. Forensics Secur. 10(10), 2084–2094 (2015). https://doi.org/10.1109/TIFS.2015.2445742

    Article  Google Scholar 

  27. Alkawaz, M.H.; Sulong, G.; Saba, T.; Rehman, A.: Detection of copy-move image forgery based on discrete cosine transform. Neural Comput. Appl. 30(1), 183–192 (2018). https://doi.org/10.1007/s00521-016-2663-3

    Article  Google Scholar 

  28. Li, J.; Li, X.; Yang, B.; Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2014). https://doi.org/10.1109/TIFS.2014.2381872

    Article  Google Scholar 

  29. Warbhe, A.D.; Dharaskar, R.; Thakare, V.: A survey on keypoint based copy-paste forgery detection techniques. Procedia Comput. Sci. 78, 61–67 (2016). https://doi.org/10.1016/j.procs.2016.02.011

    Article  Google Scholar 

  30. Farid, H.: Image forgery detection. IEEE Signal Process. Magazine 26(2), 16–25 (2009). https://doi.org/10.1109/MSP.2008.931079

    Article  Google Scholar 

  31. Manu, V.; Mehtre, B.M.: Copy-move tampering detection using affine transformation property preservation on clustered keypoints. Signal Image Video Process. 12(3), 549–556 (2018). https://doi.org/10.1007/s11760-017-1191-7

    Article  Google Scholar 

  32. Bi, X.; Pun, C.-M.; Yuan, X.-C.: Multi-level dense descriptor and hierarchical feature matching for copy–move forgery detection. Inf. Sci. 345, 226–242 (2016). https://doi.org/10.1016/j.ins.2016.01.061

    Article  Google Scholar 

  33. Yuan, Y.; Zhang, Y.; Chen, S.; Wang, H.: Robust region duplication detection on log-polar domain using band limitation. Arab. J. Sci. Eng. 42(2), 559–565 (2017). https://doi.org/10.1007/s13369-016-2268-2

    Article  Google Scholar 

  34. Zandi, M.; Mahmoudi-Aznaveh, A.; Talebpour, A.: Iterative copy-move forgery detection based on a new interest point detector. IEEE Trans. Inf. Forensics Secur. 11(11), 2499–2512 (2016). https://doi.org/10.1109/TIFS.2016.2585118

    Article  Google Scholar 

  35. Yang, F.; Li, J.; Lu, W.; Weng, J.: Copy-move forgery detection based on hybrid features. Eng. Appl. Artif. Intell. 59(3), 73–83 (2017). https://doi.org/10.1016/j.engappai.2016.12.022

    Article  Google Scholar 

  36. Pandey, R.C.; Agrawal, R.; Singh, S.K.; Shukla, K.K.: Passive copy move forgery detection using SURF, HOG and SIFT features. In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014 2015, pp. 659–666. Springer (2015)

  37. Yu, L.; Han, Q.; Niu, X.: Feature point-based copy-move forgery detection: covering the non-textured areas. Multimed. Tools Appl. 75(2), 1159–1176 (2016). https://doi.org/10.1007/s11042-014-2362-y

    Article  Google Scholar 

  38. Bin, Y.; Xingming, S.; Xianyi, C.; Zhang, J.; Xu, L.: An efficient forensic method for copy–move forgery detection based on DWT-FWHT. Radioengineering 22(4), 1098–1105 (2013)

    Google Scholar 

  39. Mikolajczyk, K.; Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005). https://doi.org/10.1109/TPAMI.2005.188

    Article  Google Scholar 

  40. Juan, L.; Gwun, O.: A comparison of sift, pca-sift and surf. Int. J. Image Process. (IJIP) 3(4), 143–152 (2009)

    Google Scholar 

  41. Fahim, A.; Saake, G.; Salem, A.; Torkey, F.; Ramadan, M.: Improved DBSCAN for spatial databases with noise and different densities. Comput. Sci. Telecommun. 3, 53–60 (2009)

    Google Scholar 

  42. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd 1996, vol. 34, pp. 226–231 (1996)

  43. Fischler, M.A.; Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  44. Amerini, I.; Ballan, L.; Caldelli, R.; Del Bimbo, A.; Serra, G.: A sift-based forensic method for copy–move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011). https://doi.org/10.1109/TIFS.2011.2129512

    Article  Google Scholar 

  45. Cozzolino, D.; Poggi, G.; Verdoliva, L.: Efficient dense-field copy–move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015). https://doi.org/10.1109/TIFS.2015.2455334

    Article  Google Scholar 

  46. Thampi, S.M.; Gelbukh, A.; Mukhopadhyay, J.: Advances in Signal Processing and Intelligent Recognition Systems. Springer, Berlin (2014)

    Book  Google Scholar 

  47. Chen, C.-C.; Lu, W.-Y.; Chou, C.-H.: Rotational copy-move forgery detection using SIFT and region growing strategies. Multimed. Tools Appl. (2019). https://doi.org/10.1007/s11042-019-7165-8

    Article  Google Scholar 

  48. Abdel-Basset, M.; Manogaran, G.; Fakhry, A.E.; El-Henawy, I.: 2-Levels of clustering strategy to detect and locate copy-move forgery in digital images. Multimed. Tools Appl. 1, 1–19 (2018). https://doi.org/10.1007/s11042-018-6266-0

    Article  Google Scholar 

  49. Soni, B.; Das, P.K.; Thounaojam, D.M.: Geometric transformation invariant block based copy-move forgery detection using fast and efficient hybrid local features. J. Inf. Secur. Appl. 45, 44–51 (2019). https://doi.org/10.1016/j.jisa.2019.01.007

    Article  Google Scholar 

  50. Yang, B.; Sun, X.; Guo, H.; Xia, Z.; Chen, X.: A copy-move forgery detection method based on CMFD-SIFT. Multimed. Tools Appl. 77(1), 837–855 (2018). https://doi.org/10.1007/s11042-016-4289-y

    Article  Google Scholar 

  51. Popescu, A.C.; Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005). https://doi.org/10.1109/TSP.2004.839932

    Article  MathSciNet  MATH  Google Scholar 

  52. Soni, B.; Das, P.K.; Thounaojam, D.M.: Improved block-based technique using SURF and FAST keypoints matching for copy-move attack detection. In: 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India 2018, pp. 197–202. IEEE (2018)

  53. Li, J.; Li, X.; Yang, B.; Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2015). https://doi.org/10.1109/TIFS.2014.2381872

    Article  Google Scholar 

  54. Zhong, J.; Gan, Y.; Young, J.; Huang, L.; Lin, P.: A new block-based method for copy move forgery detection under image geometric transforms. Multimed. Tools Appl. 76(13), 14887–14903 (2017). https://doi.org/10.1007/s11042-016-4201-9

    Article  Google Scholar 

  55. Amerini, I.; Ballan, L.; Caldelli, R.; Del Bimbo, A.; Del Tongo, L.; Serra, G.: Copy-move forgery detection and localization by means of robust clustering with J-Linkage. Sig. Process. Image Commun. 28(6), 659–669 (2013). https://doi.org/10.1016/j.image.2013.03.006

    Article  Google Scholar 

  56. Soni, B.; Das, P.K.; Thounaojam, D.M.: multiCMFD: fast and efficient system for multiple copy-move forgeries detection in image. In: Proceedings of the 2018 International Conference on Image and Graphics Processing 2018, pp. 53–58. ACM (2018)

  57. Muzaffer, G.; Ulutas, G.: A fast and effective digital image copy move forgery detection with binarized SIFT. In: 2017 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona, Spain 2017, pp. 595–598. IEEE (2017)

Download references

Author information

Authors and Affiliations

Authors

Contributions

MB, HAH, ZM, TS, MR have authors contributed equally to this work.

Corresponding author

Correspondence to Zahid Mehmood.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Habib, H.A., Mehmood, Z. et al. Single and Multiple Copy–Move Forgery Detection and Localization in Digital Images Based on the Sparsely Encoded Distinctive Features and DBSCAN Clustering. Arab J Sci Eng 45, 2975–2992 (2020). https://doi.org/10.1007/s13369-019-04238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04238-2

Keywords

Navigation