Skip to main content
Log in

Using Fuzzy-Improved Principal Component Analysis (PCA-IF) for Ranking of Major Accident Scenarios

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The industrial risk mapping is a topical problem in the field of risk management that attracts many researchers to develop risk matrices to ensure consultation between their actors. In this context, this paper aims to propose the principal component analysis (PCA) method as support for this consultation. Indeed, the use of PCA method is justified by its robustness for aggregate initial data associated with industrial risks as principal factors and ranking of this risk in terms of their criticalities in risk matrices. However, the aggregation of initial data on industrial risks by the main factors, in some cases, leads to inaccuracies which make it difficult to classify certain risks. This paper proposes two variants of PCA method to solve this inaccuracy and succeeds in classifying risks according to their respective criticalities, namely PCA-Improved (PCA-I) and PCA-I-Fuzzy (PCA-IF). The results come from the PCA application and its proposed variants (PCA-I and PCA-IF) on an example of accident scenarios ranking. We have established a scientific basis for the capitalization of mapping tool for consultation and decision support to industrial risk managers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baybutt, P.: The use of risk matrices and risk graphs for SIL determination. Process Saf. Prog. 33(2), 179–182 (2014)

    Google Scholar 

  2. Marhavilas, P.K.; Koulouriotis, D.; Gemeni, V.: Risk analysis and assessment methodologies in the work sites: on a review, classification and comparative study of the scientific literature of the period 2000–2009. J. Loss Prev. Process Ind. 24(5), 477–523 (2011)

    Google Scholar 

  3. Tixier, J.; Dusserre, G.; Salvi, O.; Gaston, D.: Review of 62 risk analysis methodologies of industrial plants. J Loss Prevent Process Ind. 15(4), 291–303 (2002)

    Google Scholar 

  4. CCPS: Guidelines for chemical process quantitative risk analysis, 2nd edn. Wiley, New York (2000)

    Google Scholar 

  5. American Institute of Chemical Engineers (AICE).: Guidelines for hazard evaluation procedures, 2nd edn. New York (1992)

  6. Hadef, H.; Djebabra, M.; Sedrat, L.; Taghelabet, M.: Contribution to the evaluation of safety barriers performance. World Journal of Science, Technology and Sustainable Development. 16(1), 56–68 (2019)

    Google Scholar 

  7. Baybutt, P.: Guidelines for designing risk matrices. Process Saf. Prog. 37(1), 41–46 (2016)

    Google Scholar 

  8. Reniers, G.L.L.; Dullaert, W.; Ale, B.J.M.; Soudan, K.: Developing an external domino accident prevention framework: Hazwim. J Loss Prev Process Ind 18(3), 127–138 (2005)

    Google Scholar 

  9. Da Cunha, S.B.: A review of quantitative risk assessment of onshore pipelines. J Loss Prev Process, Ind. 44(11), 282–298 (2016)

    Google Scholar 

  10. Gul, M.; Guneri, A.F.: A fuzzy multi criteria risk assessment based on decision matrix technique: a case study for aluminum industry. J. Loss Prev. Process Ind. 40(3), 89–100 (2016)

    Google Scholar 

  11. Peeters, W.; Peng, Z.: An approach towards global standardization of the risk matrix. Journal of Space Safety Engineering. 2(1), 31–38 (2015)

    Google Scholar 

  12. Merad, M.: Analyse de l’état de l’art sur les grilles de criticité. INERIS report, France, DRA-38 (2004)

  13. Cox Jr., L.A.: What’s wrong with risk matrices? Risk Anal. 28(2), 497–512 (2008)

    Google Scholar 

  14. Hubbard, D.; Evans, D.: Problems with scoring methods and ordinal scales in risk assessment. IBM J. Res. Dev. 54(3), 2:1–2:10 (2010)

    Google Scholar 

  15. Smith, E.D.; Siefert, W.T.; Drain, D.: Risk matrix input data biases. Syst. Eng. 12(4), 344–360 (2009)

    Google Scholar 

  16. Levine, E.S.: Improving risk matrices: the advantages of logarithmically scaled axes. J. Risk Res. 15(2), 209–222 (2012)

    Google Scholar 

  17. Ni, H.; Chen, A.; Chen, N.: Some extensions on risk matrix approach. Safety Science. 48(10), 1269–1278 (2010)

    Google Scholar 

  18. Franks, A.P.; Maddison, T.: A simplified method for the estimation of individual risk. Process Saf. Environ. Prot. 84(2), 101–108 (2006)

    Google Scholar 

  19. Ruge, B.: Risk matrix as tool for risk assessment in the chemical process industries, In: Spitzer, C., Schmocker, U., Dang, V.N., (Eds.), Probabilistic Safety Assessment and Management, Springer. pp. 2693–2698 (2004)

    Google Scholar 

  20. Flage, R.; Røed, W.: A reflection on some practices in the use of risk matrices. 11th International Probabilistic Safety Assessment and Management. Conference and the Annual European Safety and Reliability Conference. pp. 881–891 (2012)

  21. ISO.; IEC/ISO 31010: 2009 Risk management – risk assessment techniques. E ed. CENELEC, Brussels, (2010)

  22. Lin, H.; Yan, C.; Lan, Y.L.: A risk matrix approach based on clustering algorithm. Journal of Applied Sciences. 13(20), 4188–4194 (2013)

    Google Scholar 

  23. Zhu, Q.; Kuang, X.; Shen, Y.: Risk matrix method and its application in the field of technical project risk management. Engineering Science. 5(1), 89–94 (2003)

    Google Scholar 

  24. Markowski, A.S.; Sam Mannan, M.: Fuzzy risk matrix. J. Hazard. Mater. 159(1), 152–157 (2008)

    Google Scholar 

  25. Tran, N.M.; Petra, B.; Maria, O.; Härdle, W.K.: Principal component analysis in an asymmetric norm. Journal of Multivariate Analysis. 171, 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Han, L.; Wu, Z.; Zeng, K.; Yang, X.: Online multilinear principal component analysis. Neuro-Computing. 275, 888–896 (2018)

    Google Scholar 

  27. Palese, L.L.: A random version of principal component analysis in data clustering. Comput. Biol. Chem. 73(4), 57–64 (2018)

    Google Scholar 

  28. Libing, F.; Binqing, X.; Honghai, Y.; Qixing, Y.: A stable systemic risk ranking in China’s banking sector: based on principal component analysis. Physica A 492, 1997–2009 (2018)

    Google Scholar 

  29. Penkova, T.G.: Principal component analysis and cluster analysis for evaluating the natural and anthropogenic territory safety. Procedia Computer Science. 112, 99–108 (2017)

    Google Scholar 

  30. Ng, S.C.: Principal component analysis to reduce dimension on digital image. Procardia Computer Science. 111, 113–119 (2017)

    Google Scholar 

  31. Manwendra, K.; Tripathi, P.P.; Chatto, P.; Ganguly, S.: Multivariate analysis and classification of bulk metallic glasses using principal component analysis. Comput. Mater. Sci. 107, 79–87 (2015)

    Google Scholar 

  32. Reza, M.; Yazdi, Y.: Quantitative assessment of spiritual capital in changing organizations by principal component analysis and fuzzy clustering. Journal of Organizational Change Management. 28(3), 469–485 (2015)

    MathSciNet  Google Scholar 

  33. Barshan, E.; Ghodsi, A.; Azimifar, Z.; Jahromi, M.Z.: Supervised principal component analysis: visualization, classification and regression on subspaces and sub-manifolds. Pattern Recogn. 44(7), 1357–1371 (2011)

    MATH  Google Scholar 

  34. Ringnér, M.: What is principal component analysis? Nat. Biotechnol. 26(3), 303–304 (2008)

    Google Scholar 

  35. Bagui, O.-K.; Zoueu, J.T.; Megnassan, E.: Segmentation by fuzzy logic to estimate the number of red blood cells in multi-spectral images of unstained blood smear. Afrique Sciences. 11(3), 27–36 (2003)

    Google Scholar 

  36. Zhu, J.: Data envelopment analysis vs principal component analysis: an illustrative study of economic performance of Chinese cities theory and methodology. Eur. J. Oper. Res. 111(1), 50–61 (1998)

    MATH  Google Scholar 

  37. Nait-Said, R.; Zidani, F.; Ouzraoui, N.: Modified risk graph method using fuzzy rule-based approach. J. Hazard. Mater. 164(2–3), 651–658 (2009)

    Google Scholar 

  38. Ak, M.F.; Gul, M.: AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis. Complex Intell Syst 5, 113–126 (2018)

    Google Scholar 

  39. El-Kholy, A.M.; El-Shikh, M.Y.; Abd-Elhay, S.K.: Which fuzzy ranking method is best for maximizing fuzzy net present value? Arab J Sci Eng. 42(9), 4079–4098 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Wang, Y.; Liu, B.; Qi, Y.: A risk evaluation method with an improved scale for tunnel engineering. Arab J Sci Eng. 43(4), 2053–2067 (2018)

    Google Scholar 

  41. Yazdi, M.; Nikfar, F.; Nasrabadi, M.: Failure probability analysis by employing fuzzy fault tree analysis. Int J Syst Assur Eng Manag. 8(2), 1177–1193 (2017)

    Google Scholar 

  42. Ouazraoui, N.; Nait-Said, R.; Bourareche, M.; Sellami, I.: Layers of protection analysis in the framework of possibility theory. J. Hazard. Mater. 262, 168–178 (2013)

    Google Scholar 

  43. Markowski, A.S.; Sam, Mannann M.; Agata, B.: Fuzzy logic for process safety analysis. J. Loss Prev. Process Ind. 22(6), 695–702 (2009)

    Google Scholar 

  44. Jolliffe, L.T.: Principal Component Analysis. Springer-Verlag, New York (1986)

    MATH  Google Scholar 

  45. Gupta, A.; Barbu, A.: Parameterized principal component analysis. Pattern Recogn. 78, 215–227 (2018)

    Google Scholar 

  46. Bishop, C.M.: Pattern recognition and machine learning (information science and statistics). Springer, Berlin (2006)

    MATH  Google Scholar 

  47. Mamdani, E.H.; Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for comments that greatly improved the manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadef Hefaidh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hefaidh, H., Mébarek, D. Using Fuzzy-Improved Principal Component Analysis (PCA-IF) for Ranking of Major Accident Scenarios. Arab J Sci Eng 45, 2235–2245 (2020). https://doi.org/10.1007/s13369-019-04233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04233-7

Keywords

Navigation