Skip to main content
Log in

Investigation on Mode I Fracture Behavior of Hybrid Fiber-Reinforced Geopolymer Composites

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Recent reports in the literature have shown that fiber-reinforced geopolymer composites (FRGC) made with monofibers exhibit a significant enhancement in fracture energy. However, many aspects of the fracture performance of hybrid fiber-reinforced geopolymer composites (HFRGC) remain largely unexploited, and these are predominant for the structures. For the first time, the mode I fracture energy of HFRGC is investigated. The mode I behavior was assessed using pre-notched beams in accordance with the RILEM three-point bending test. Five different HFRGC mixtures were prepared using three fiber types: steel, polypropylene and glass (SF, PF and GF). The parameters of the pre-notched beam in flexure tested in this study were the first crack and peak load, crack mouth opening displacement at the first crack load and peak load, equivalent tensile strength, post-peak slope, reinforcing index, residual tensile strength and fracture energy. The results reveal that there is a positive interaction amidst the fibers in geopolymer composites that leads to an enhancement in the mode I fracture energy compared to the reference specimen. This study probes the influence of novel HFRGC while producing high-quality concrete, which can then be leveraged for sustainable infrastructure and various civil engineering works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Asrani, N.P.; Murali, G.; Parthiban, K.; Surya, K.; Prakash, A.; Rathika, K.; Chandru, U.: A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: experiments and modelling. Constr. Build. Mater. 203, 56–68 (2019)

    Article  Google Scholar 

  2. Maa, C.K.; Awang, A.Z.; Omar, W.: Structural and material performance of geopolymer concrete: a review. Constr Build Mater. 186, 90–102 (2018)

    Article  Google Scholar 

  3. Sakulich, A.R.: Reinforced geopolymer composites for enhanced material greenness and durability. Sustain. Cities Soc. 1(4), 195–210 (2011)

    Article  Google Scholar 

  4. Benhalal, E.; Zahedi, G.; Shamsaei, E.; Bahodori, A.: Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 51, 142–161 (2012)

    Article  Google Scholar 

  5. Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B.: Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics. Compos. Struct. 168, 402–427 (2017)

    Article  Google Scholar 

  6. Deb, P.S.; Nath, P.; Sarker, P.K.: The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 62(10), 32–39 (2014)

    Article  Google Scholar 

  7. Patil, K.K.; Allouche, E.N.: Impact of alkali silica reaction on fly ash-based geopolymer concrete. J. Mater. Civ. Eng. 25(1), 131–139 (2013)

    Article  Google Scholar 

  8. Sukontasukkul, P.; Pongsopha, P.; Chindaprasirt, P.; Songpiriyakij, S.: Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Constr. Build. Mater. 161, 37–44 (2018)

    Article  Google Scholar 

  9. Noushini, A.; Hastings, M.; Castel, A.; Aslani, F.: Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Constr. Build. Mater. 186, 454–475 (2018)

    Article  Google Scholar 

  10. Majidi, M.H.A.; Lampropoulos, A.; Cundy, A.B.: Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties. Constr. Build. Mater. 139, 286–307 (2017)

    Article  Google Scholar 

  11. Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A.: Comparative deflection hardening behavior of short fiber reinforced geopolymers composites. Constr. Build. Mater. 70(15), 54–64 (2014)

    Article  Google Scholar 

  12. Shaikh, F.U.A.: Deflection hardening behavior of short fiber reinforced fly ash based geopolymer composites. Mater. Des. 50, 674–682 (2013)

    Article  Google Scholar 

  13. Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A.: Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Compos. Part B Eng. 89, 253–265 (2015)

    Article  Google Scholar 

  14. Korniejenko, K.; Fraczek, E.; Pytlak, E.; Adamski, M.: Mechanical properties of geopolymer composites reinforced with natural fibers. Proc. Eng. 151, 388–393 (2016)

    Article  Google Scholar 

  15. Kabay, N.: Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 50, 95–101 (2014)

    Article  Google Scholar 

  16. Lee, J.; Lopez, M.M.: An experimental study on fracture energy of plain concrete. Int. J. Concr. Struct. Mater. 8(2), 129–139 (2014)

    Article  Google Scholar 

  17. Bideci, A.; Öztürk, H.; Bideci, Ö.S.; Emiroglu, M.: Fracture energy and mechanical characteristics of self-compacting concretes including waste bladder tyre. Constr. Build. Mater. 149, 669–678 (2017)

    Article  Google Scholar 

  18. Kumar, S.S.; Pazhani, K.C.; Ravisankar, K.: Fracture behaviour of fibre reinforced geopolymer concrete. Curr. Sci. 113(1), 116–122 (2017)

    Article  Google Scholar 

  19. Xie, J.; Huang, L.; Guo, Y.; Li, Z.; Fang, C.; Li, L.; Wang, J.: Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres. Constr. Build. Mater. 178, 612–623 (2018)

    Article  Google Scholar 

  20. Yao, W.; Li, J.; Keru, W.: Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem. Concr. Res. 33(1), 27–30 (2003)

    Article  Google Scholar 

  21. Sivakumar, A.; Santhanam, M.: A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cem. Concr. Compos. 29(7), 575–581 (2007)

    Article  Google Scholar 

  22. Hsie, M.; Chijen, T.; Song, P.S.: Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 494(1–2), 153–157 (2008)

    Article  Google Scholar 

  23. Ganesan, N.; Indira, P.V.; Sabeena, M.V.: Behaviour of hybrid fibre reinforced concrete beam–column joints under reverse cyclic loads. Mater. Des. 54, 686–693 (2014)

    Article  Google Scholar 

  24. Banthia, N.; Soleimani, S.M.: Flexural response of hybrid fiber reinforced cementitious composites. ACI Mater. J. 102(6), 382–389 (2005)

    Google Scholar 

  25. Almusallam, T.; Ibrahim, S.M.; Al-Salloum, Y.; Aref, A.; Abbas, H.: Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cem. Concr. Compos. 74, 201–217 (2016)

    Article  Google Scholar 

  26. Rooholamini, H.; Hassani, A.; Aliha, M.R.M.: Fracture properties of hybrid fibre-reinforced roller-compacted concrete in mode I with consideration of possible kinked crack. Constr. Build. Mater. 187, 248–256 (2018)

    Article  Google Scholar 

  27. Alberti, M.G.; Enfedaque, A.; Gálvez, J.C.: Fibre reinforced concrete with a combination of polyolefin and steel-hooked fibres. Compos. Struct. 171, 317–325 (2017)

    Article  Google Scholar 

  28. Parthiban, K.; Kaliyaperumal, S.R.M.: Influence of recycled concrete aggregates on the flexural properties of reinforced alkali activated slag concrete. Constr. Build. Mater. 102(1), 51–58 (2016)

    Google Scholar 

  29. Parthiban, K.; Kaliyaperumal, S.R.M.: Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete. Constr. Build. Mater. 133, 65–72 (2017)

    Article  Google Scholar 

  30. IS: 516-1959. Indian Standard Method of Tests for Strength of Concrete. Reaffirmed (2004)

  31. RILEM TC 162-TDF; Vandewalle, L.; et al.: Test and design methods for steel fibre reinforced concrete bending test, materials and structures, RILEM Publications. Mater. Struct. 35, 579–582 (2002)

    Article  Google Scholar 

  32. Al-Tayeb, M.M.; Abu Bakar, B.; Akil, H.M.; Ismail, H.: Effect of partial replacements of sand and cement by waste rubber on the fracture characteristics of concrete. Polym. Plast. Technol. Eng. 51(6), 583–589 (2012)

    Article  Google Scholar 

  33. Güneyisi, E.; Gesoglu, M.; Özturan, T.; Ipek, S.: Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber. Constr. Build. Mater. 84, 156–168 (2015)

    Article  Google Scholar 

  34. Malvar, L.J.; Warren, G.: Fracture energy for three-point-bend tests on single edge-notched beams. Exp. Mech. 28(3), 266–272 (1988)

    Article  Google Scholar 

  35. RILEM FMC-50: Determination of the fracture energy of mortar and concrete by means of three point bend tests on notched beams. Mater. Struct. 18(4), 287–290 (1985)

    Article  Google Scholar 

  36. Beygi, M.H.A.; Kazemi, M.T.; Nikbin, I.M.; Amiri, J.V.: The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete. Mater. Des. 50, 267–276 (2013)

    Article  Google Scholar 

  37. Madandoust, R.; Ranjbar, M.M.; Ghavidel, R.; Shahabi, S.F.: Assessment of factors influencing mechanical properties of steel fiber reinforced self-compacting concrete. Mater. Des. 83, 284–294 (2015)

    Article  Google Scholar 

  38. Ezeldin, A.S.; Balaguru, P.N.: Normal-and high-strength fiber-reinforced concrete under compression. ASCE J. Mater. Civ. Eng. 4(4), 415–429 (1992)

    Article  Google Scholar 

  39. Karadelis, J.N.; Lin, Y.: Flexural strengths and fibre efficiency of steel fibre- reinforced, roller-compacted, polymer modified concrete. Constr. Build. Mater. 93, 498–505 (2015)

    Article  Google Scholar 

  40. Banthia, N.; Majdzadeh, F.; Wu, J.; Bindiganavile, V.: Fiber synergy in hybrid fiber reinforced concrete (HFRC) in flexure and direct shear. Cem. Concr. Compos. 48, 91–97 (2014)

    Article  Google Scholar 

  41. Banthia, N.; Nandakumar, N.: Crack growth resistance of hybrid fiber reinforced cement composites. Cem. Concr. Compos. 25(1), 3–9 (2003)

    Article  Google Scholar 

  42. Markovic, I.: High-Performance Hybrid-Fibre Concrete: Development and Utilisation. IOS Press, Amsterdam (2006)

    Google Scholar 

  43. Nataraja, M.C.; Dhang, N.; Gupta, A.P.: Stress-strain curves for steel-fiber reinforced concrete in compression. Cem. Concr. Compos. 21(5–6), 383–390 (1999)

    Article  Google Scholar 

  44. Taerwe, L.; Gysel, A.: Influence of steel fibers on design stress–strain curve for high-strength concrete. J. Eng. Mech. 122, 695–704 (1996)

    Article  Google Scholar 

  45. Abadel, A.; Abbas, H.; Almusallam, T.; Al-Salloum, Y.; Siddiqui, N.: Experimental and analytical investigations of mechanical properties of hybrid fiber reinforced concrete. Mag. Concr. Res. 68(16), 823–843 (2016)

    Article  Google Scholar 

  46. Ibrahim, S.M.; Almusallam, T.H.; Al-Salloum, Y.A.; Abadel, A.A.; Abbas, H.: Strain rate dependent behavior and modeling for compression response of hybrid fiber reinforced concrete. Lat. Am. J. Solids Struct. 13, 1695–1715 (2016)

    Article  Google Scholar 

  47. Barros, J.A.O.; Cunha, V.M.C.F.; Ribeiro, A.F.; Antunes, J.A.B.: Post-cracking behavior of steel fibre reinforced concrete. Mater. Struct. 38, 47–56 (2005)

    Article  Google Scholar 

  48. RILEM TC 162-TDF: Test and design method for steel fibre reinforced concrete: σ–ε design method, final recommendation. Mater. Struct. 36(262), 560–567 (2003)

    Article  Google Scholar 

  49. RILEM TC 162-TDF: Test and design method for steel fibre reinforced concrete, recommendation. Mater Struct. 33, 3–5 (2000)

    Article  Google Scholar 

  50. Ernst Sohn, V.: International Federation for Structural Concrete. Fib Model Code for Concrete Structures, Berlin (2010)

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to SASTRA University for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asrani, N.P., Murali, G., Abdelgader, H.S. et al. Investigation on Mode I Fracture Behavior of Hybrid Fiber-Reinforced Geopolymer Composites. Arab J Sci Eng 44, 8545–8555 (2019). https://doi.org/10.1007/s13369-019-04074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04074-4

Keywords

Navigation