Skip to main content
Log in

On Designing a New Bayesian Dispersion Chart for Process Monitoring

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Statistical quality control is an integral part of modern manufacturing, and control charts are widely used to improve and control the performance of a process. However, much of the work related to process monitoring has been done using frequentist approaches, whereas the Bayesian methodology has a practical advantage in process monitoring; that is, it can be used with a small phase-I dataset. In this article, we considered different symmetric and asymmetric loss functions for designing Bayesian control charts and noticed that the performance of the Bayesian charts is biased, i.e., in-control performance of the charts is not equal to the desired value for some loss functions and comparison among different Bayesian charts can be misleading. Therefore, to get the desired in-control performance under different loss functions, we propose a corrected design of the Bayesian control charts. In addition to posterior charts, we also discuss a predictive control chart to monitor the future observations in this study. Besides a simulation study, we also present two real data examples: the first example is to monitor the surface roughness of reamed holes in a particular metal part while the second is about monitoring the measurements of a diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Montgomery, D.C.: Introduction to Statistical Quality Control, 6th edn. Wiley, New York (2009)

    MATH  Google Scholar 

  2. Azam, M.; Arshad, A.; Aslam, M.; Jun, Chi-Hyuck: A control chart for monitoring the process mean using successive sampling over two occasions. Arab. J. Sci. Technol. 42, 2915–2926 (2017)

    Google Scholar 

  3. Hussain, S.; Song, L.; Ahmad, S.; Riaz, M.: New Interquartile range EWMA control charts with applications in continuous stirred tank reactor process. Arab. J. Sci. Technol. 44(3), 2467–2485 (2019). https://doi.org/10.1007/s13369-018-3162-x

    Article  Google Scholar 

  4. Brush, G.G.: A comparison of classical and Bayes producer’s risk. Technometrics 28(1), 69–72 (1986)

    Article  Google Scholar 

  5. Biswas, S.: Statistics of Quality Control. New Central Book Agency (P) Limited, Kolkata (1997)

    Google Scholar 

  6. Sharma, K.K.; Bhuttani, R.K.: A comparison of classical and Bayes risks when quality varies randomly. Microelectron Reliab. 32(4), 493–495 (1992)

    Article  Google Scholar 

  7. Menzefricke, U.: On the evaluation of control chart limits based on predictive distributions. Commun. Stat. Theory Methods 31(8), 1423–1440 (2002)

    Article  MathSciNet  Google Scholar 

  8. Menzefricke, U.: Control chart for the generalized variance based on its predictive distribution. Commun. Stat. Theory Methods 36, 1031–1038 (2007)

    Article  MathSciNet  Google Scholar 

  9. Sharma, K.K.; Singh, B.; Geol., J.: Analysis of \( \bar{X} \) and \( R \) charts when standards vary randomly. In: Pandey, B.N. (ed.) Statistical Techniques in Life Testing, Reliability, Sampling Theory and Quality Control (2007)

  10. Saghir, A.: Phase-I design scheme for \( \bar{X} \) chart based on posterior distribution. Commun. Stat. Theory Methods 44(3), 644–655 (2015)

  11. Bhat, S.; Gokhale, K.D.: Posterior control chart for process average under conjugate prior distribution. Econ. Qual. Control 29(1), 19–27 (2014)

    Article  Google Scholar 

  12. Saghir, A.: Evaluation of \( \bar{X} \) and S charts when standards vary randomly. Interstat-November 2007#5 (2007)

  13. Wu, X.; Miao, R.; Zhang, X.; Jiang, Z.; Chu, X.: A conjugate Bayesian approach to control chart for multi-batch and low volume production. Int. J. Prod. Res. 53, 2185–2197 (2015). https://doi.org/10.1080/00207543.2014.975857

    Article  Google Scholar 

  14. Riaz, M.; Ali, S.: On process monitoring using location control charts under different loss functions. Trans. Inst. Meas. Control 38(9), 1107–1119 (2016). https://doi.org/10.1177/0142331215583325

    Article  Google Scholar 

  15. Ali, S.; Riaz, M.: Cumulative quantity control chart for the simple and mixture of inverse Rayleigh distribution. Comput. Ind. Eng. 73, 11–20 (2014)

    Article  Google Scholar 

  16. Maravelakis, P.E.; Panaretos, J.; Psarakis, S.: Effect of estimation of the process parameters on the control limits of the univariate control charts for process dispersion. Commun. Stat. Simul. Comput. 31(3), 443–461 (2002)

    Article  MathSciNet  Google Scholar 

  17. Zhang, L.; Bebbington, M.S.; Lai, C.D.; Govindaraju, K.: On statistical design of the S2 control chart. Commun. Stat. Theory Methods 34(1), 229–244 (2005)

    Article  Google Scholar 

  18. Guo, B.; Wang, B.: The design of the ARL-unbiased S2 chart when the in-control variance is estimated. Qual. Reliab. Eng. Int. 31(3), 501–511 (2015)

    Article  Google Scholar 

  19. Eprecht, E.K.; Loureiro, L.D.; Chakraborti, S.: Effect of the amount of Phase I data on the Phase II performance of S2 and S control charts. J. Qual. Technol. 47(2), 139–155 (2015)

    Article  Google Scholar 

  20. Faraz, A.; Woodall, W.H.; Heuchenne, C.: Guaranteed conditional performance of the S2 control chart with estimated parameters. Int. J. Prod. Res. 53(14), 4405–4413 (2015)

    Article  Google Scholar 

  21. Castagliola, P.; Figueiredo, F.O.: The median chart with estimated parameters. Eur. J. Ind. Eng. 7(5), 594–614 (2013)

    Article  Google Scholar 

  22. Castagliola, P.; Oprime, P.C.; Khoo, M.B.C.: The double sampling S2 chart with estimated process variance. Commun. Stat. Theory Methods 46(7), 3556–3573 (2017). https://doi.org/10.1080/03610926.2015.1066814

    Article  MATH  Google Scholar 

  23. Chen, T.; Morris, J.; Martin, E.: Bayesian control limits for statistical process monitoring. In: International Conference on Control and Automation ICCA Budapest, Hungary, vol. 1, pp. 409–414 (2005). https://doi.org/10.1109/icca.2005.1528154

  24. Woodward, W.P.; Naylor, C.J.: An application to Bayesian methods in SPC. Statistician 42(4), 461–469 (1993)

    Article  Google Scholar 

  25. Zhang, J.; He, C.; Li, Z.; Wang, Z.: Likelihood ratio test-based chart for monitoring the process variability. Commun. Stat.-Simul. Comput. 46(1), 704–728 (2017). https://doi.org/10.1080/03610918.2014.957845

    Article  MathSciNet  MATH  Google Scholar 

  26. Garcia-Diaz, J.C.: The effective variance control chart for monitoring the dispersion process with missing data. Eur. J. Ind. Eng. 1(1), 40–55 (2007)

    Article  Google Scholar 

  27. Omar, M.H.; Joarder, A.H.; Riaz, M.: On a correlated variance ratio distribution and its industrial application. Commun. Stat.-Theory Methods 44(2), 261–274 (2015)

    Article  MathSciNet  Google Scholar 

  28. Aslam, M.; Haq, A.: On the prior selection for variance of normal distribution. Interstat (May 2009#1) (2009)

  29. Does, R.J.M.M.; Roes, K.C.B.; Trip, A.: Statistical Process Control in Industry. Kluwer Academic, Dordrecht (1999). ISBN 0-7923-5570-9

    MATH  Google Scholar 

  30. Riaz, M.: Monitoring of process parameters using Bayesian methodology. Int. J. Agric. Stat. Sci. 7(1), 1–7 (2011)

    MATH  Google Scholar 

  31. Ali, S.: On the Bayesian estimation of weighted Lindley distribution. J. Stat. Comput. Simul. 85(5), 855–880 (2015). https://doi.org/10.1080/00949655.2013.847442

    Article  MathSciNet  Google Scholar 

  32. Duncan, A.: Quality control and industrial statistics, vol. 3. Richard D. Irwin Inc, Homewood (1965)

    MATH  Google Scholar 

  33. Zhang, G.: Improved R and S control charts for monitoring the process variance. J. Appl. Stat. 41(6), 1260–1273 (2014). https://doi.org/10.1080/02664763.2013.864264

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Riaz, M. On Designing a New Bayesian Dispersion Chart for Process Monitoring. Arab J Sci Eng 45, 2093–2111 (2020). https://doi.org/10.1007/s13369-019-04036-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04036-w

Keywords

Mathematics Subject Classification

Navigation