Skip to main content
Log in

New Modelling Methodology for Seismic Design of Precast Structures and Performance Evaluation Considering Soil–Foundation System

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Precast reinforced concrete (RC) structures are becoming popular in various parts of the globe due to its good quality control and less erection time as compared to monolithic RC structures. However, in Indian construction industry use of such building systems is not gaining impetus due to hesitation of structural designers concerning its seismic safety. In case of precast structure, the joints are not monolithic, and hence, the overall force distribution in the beam–column framing system will be different than that of monolithic RC frame structure. Moreover, the response will also depend on the fixity condition at the ground level. The present work proposes a new iterative process of linear analysis to determine the internal elemental forces, viz. bending moment, shear force and axial load, for precast structure. The performance of the building is assessed using nonlinear static procedure. In addition to this, the effect of soil–foundation system on monolithic and precast structure is also studied. Further, response reduction factor ‘R’ of all the considered buildings is evaluated for collapse prevention performance level. The obtained results show that the performance of precast structure gets enhanced with the reduced value of R considered for design and analysis. Moreover, it is interesting to note that for the precast structure with soil–foundation system the failure pattern follows a more realistic seismic design philosophy as compared to monolithic structure with soil–foundation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Iverson, J.K.; Hawkins, N.M.: Performance of precast/prestressed concrete building structures during northridge earthquake. PCI J. 39, 38–55 (1994). https://doi.org/10.15554/pcij.03011994.38.55

    Article  Google Scholar 

  2. Ghosh, S.K.; Cleland, N.M.: Performance of precast concrete building structures. Earthq. Spectra 28, S349–S384 (2012). https://doi.org/10.1193/1.4000026

    Article  Google Scholar 

  3. Ozturk, T.; Ozturk, Z.: Seismic damage observed on prefabricated industrial structures after 1999 earthquakes in Turkey and protecting measures. In: 14th World Conference on Earthquake Engineering, Beijing, China (2008)

  4. Magliulo, G.; Ercolino, M.; Petrone, C.; Coppola, O.; Manfredi, G.: The Emilia earthquake: seismic performance of precast reinforced concrete buildings. Earthq. Spectra 30, 891–912 (2014). https://doi.org/10.1193/091012EQS285M

    Article  Google Scholar 

  5. Ozden, S.; Akpinar, E.; Erdogan, H.; Atalay, H.M.: Performance of precast concrete structures in October 2011 Van earthquake, Turkey. Mag. Concr. Res. 66, 543–552 (2014). https://doi.org/10.1680/macr.13.00097

    Article  Google Scholar 

  6. Priestley, M.J.N.: Overview of PRESSS research program. PCI J. 36, 50–57 (1991). https://doi.org/10.15554/pcij.07011991.50.57

    Article  Google Scholar 

  7. Nakaki, S.D.; Stanton, J.F.; Sritharan, S.: An overview of the PRESSS five-story precast test building. PCI J. 44, 26–39 (1999). https://doi.org/10.15554/pcij.03011999.26.39

    Article  Google Scholar 

  8. Hawileh, R.A.; Rahman, A.; Tabatabai, H.: Nonlinear finite element analysis and modeling of a precast hybrid beam–column connection subjected to cyclic loads. Appl. Math. Model. 34, 2562–2583 (2010). https://doi.org/10.1016/j.apm.2009.11.020

    Article  MATH  Google Scholar 

  9. IS 15916–2010: Building Design and Erection using Prefabricated Concrete—Code of Practice. Bureau of Indian Standards, New Delhi (2011)

    Google Scholar 

  10. Stanton, J. F.; Nakaki, S. D.: Design guidelines for precast concrete structural systems. PRESSS Rep. No.01/03-09, University of Washington, Seattle (2002)

  11. American Concrete Institute (ACI), Innovation Task Group 1.: Special hybrid moment frames composed of discretely jointed precast and post-posttensioned concrete members (ACI T1.2-03) and commentary (ACI T1.2R-03), Farmington Hills, MI (2003)

  12. Pampanin, S.; Priestley, M.J.N.; Sritharan, S.: Analytical modelling of the seismic behaviour of precast concrete frames designed with ductile connections. J. Earthq. Eng. 5, 329–367 (2001). https://doi.org/10.1080/13632460109350397

    Google Scholar 

  13. Kurama, Y.C.; Sritharan, S.; Fleischman, R.B.; Restrepo, J.I.; Henry, R.S.; Cleland, N.M.; Ghosh, S.K.; Bonelli, P.: Seismic-resistant precast concrete structures: state of the art. J. Struct. Eng. 144, 1–18 (2018). https://doi.org/10.1061/(asce)st.1943-541x.0001972

    Article  Google Scholar 

  14. French, C.W.; Hafner, M.; Jayashankar, V.: Connections between precast elements—failure within connection region. J. Struct. Eng. 115, 3171–3192 (1989)

    Article  Google Scholar 

  15. D’Arcy, T.; Nasser, G.; Ghosh, S.K.: Building code provisions for precast/prestressed concrete: a brief history. PCI J. 48, 116–124 (2003)

    Google Scholar 

  16. Kaya, M.; Arslan, A.S.: Analytical modeling of post-tensioned precast beam-to-column connections. Mater. Des. 30, 3802–3811 (2009). https://doi.org/10.1016/j.matdes.2009.01.033

    Article  Google Scholar 

  17. Zoubek, B.; Isakovic, T.; Fahjan, Y.; Fischinger, M.: Cyclic failure analysis of the beam-to-column dowel connections in precast industrial buildings. Eng. Struct. 52, 179–191 (2013). https://doi.org/10.1016/j.engstruct.2013.02.028

    Article  Google Scholar 

  18. Gavridou, S.; Wallace, J.W.; Nagae, T.; Matsumori, T.; Tahara, K.; Fukuyama, K.: Shake-table test of a full-scale 4-story precast concrete building. II: analytical studies. J. Struct. Eng. 143, 04017035 (2017). https://doi.org/10.1061/(asce)st.1943-541x.0001756

    Article  Google Scholar 

  19. Guan, D.; Jiang, C.; Guo, Z.; Ge, H.: Development and seismic behavior of precast concrete beam-to-column connections. J. Earthq. Eng. 22, 234–256 (2018). https://doi.org/10.1080/13632469.2016.1217807

    Article  Google Scholar 

  20. Adhikary, S.; Singh, Y.; Paul, D.K.: Effect of soil depth on inelastic seismic response of structures. Soil Dyn. Earthq. Eng. 61–62, 13–28 (2014). https://doi.org/10.1016/j.soildyn.2014.01.017

    Article  Google Scholar 

  21. Douglas, J.; Seyedi, D.M.; Ulrich, T.; Modaressi, H.; Foerster, E.; Pitilakis, K.; Pitilakis, D.; Karatzetzou, A.; Gazetas, G.; Garini, E.; Loli, M.: Evaluation of seismic hazard for the assessment of historical elements at risk: description of input and selection of intensity measures. Bull. Earthq. Eng. 13, 49–65 (2015). https://doi.org/10.1007/s10518-014-9606-0

    Article  Google Scholar 

  22. Luco, J.E.; Wong, H.L.: Response of a rigid foundation to a spatially random ground motion. Earthq. Eng. Struct. Dyn. 14, 891–908 (1986). https://doi.org/10.1002/eqe.4290140606

    Article  Google Scholar 

  23. Veletsos, A.S.; Prasad, A.M.; Wu, W.H.: Transfer functions for rigid rectangular foundations. Earthq. Eng. Struct. Dyn. 26, 5–17 (1997). https://doi.org/10.1002/(SICI)1096-9845(199701)26:1%3c5:AID-EQE619%3e3.0.CO;2-X

    Article  Google Scholar 

  24. Zhao, J.X.: Estimating kinematic interaction of raft foundations from earthquake records and its effects on structural response. Soil Dyn. Earthq. Eng. 17, 73–88 (1998). https://doi.org/10.1016/S0267-7261(97)84499-5

    Article  Google Scholar 

  25. Belletti, B.; Gasperi, A.; Spagnoli, A.; Valentino, R.: Role of soil–structure interaction on the response of precast RC structures under seismic loading: case study. Pract. Period. Struct. Des. Constr. 22, 04016014 (2016). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000298

    Article  Google Scholar 

  26. ASCE 41–17: Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers, Reston (2017)

    Google Scholar 

  27. IS 1893(Part 1)-2016: Criteria for Earthquake Resistant Design of Structures. Bureau of Indian Standards, New Delhi (2016)

    Google Scholar 

  28. IS 13920–2016: Ductile Design and Detailing of Reinforced Concrete Structures Subjected to Seismic Forces—Code of Practice. Bureau of Indian Standards, New Delhi (2016)

    Google Scholar 

  29. IS 456–2000: Plain and Reinforced Concrete- Code of Practice. Bureau of Indian Standards, New Delhi (2000)

    Google Scholar 

  30. IS 875 (Part 1)-1987: Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures. Bureau of Indian Standards, New Delhi (1989)

    Google Scholar 

  31. IS 875 (Part 2)-1987: Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures. Bureau of Indian Standards, New Delhi (1989)

    Google Scholar 

  32. SAP2000: Structural analysis program, Ver.14.2.4. Computers and Structures, Inc., Berkeley (2011)

    Google Scholar 

  33. Kocak, S.; Mengi, Y.: A simple soil–structure interaction model. Appl. Math. Model. 24, 607–635 (2000). https://doi.org/10.1016/S0307-904X(00)00006-8

    Article  MATH  Google Scholar 

  34. Alamo, G.M.; Bordon, J.D.R.; Aznarez, J.J.; Maeso, O.: Relevance of soil-pile tangential tractions for the estimation of kinematic seismic forces: formulation and setting of a Winkler approach. Appl. Math. Model. 59, 1–19 (2018). https://doi.org/10.1016/j.apm.2018.01.025

    Article  MathSciNet  Google Scholar 

  35. El Ganainy, H.; El Naggar, M.H.: Efficient 3D nonlinear Winkler model for shallow foundations. Soil Dyn. Earthq. Eng. 29, 1236–1248 (2009). https://doi.org/10.1016/j.soildyn.2009.02.002

    Article  Google Scholar 

  36. Ramezani, M.S.; Ghanbari, A.; Hosseini, S.A.A.: New mathematical model for computing natural frequencies of retaining walls considering soil–structure interaction. Appl. Math. Model. 45, 179–191 (2017). https://doi.org/10.1016/j.apm.2016.12.019

    Article  MathSciNet  Google Scholar 

  37. Gunerathne, S.; Seo, H.; Lawson, W.D.; Jayawickrama, P.W.: Variational approach for settlement analysis of circular plate on multilayered soil. Appl. Math. Model. 70, 152–170 (2019). https://doi.org/10.1016/j.apm.2019.01.009

    Article  MathSciNet  Google Scholar 

  38. Federal Emergency Management Agency: Pre-standard and Commentary for the Seismic Rehabilitation of Buildings. American Society of Civil Engineers (ASCE), Reston (2000)

    Google Scholar 

  39. Raj, D.; Singh, Y.: Effect of soil-foundation nonlinearity on capacity spectrum of a RC building with isolated foundations. In: Proceedings of Structural Engineering Convention (SEC 2016), CSIR-SERC., Chennai, India (2016)

  40. Erhan, S.; Dicleli, M.: Effect of dynamic soil–bridge interaction modeling assumptions on the calculated seismic response of integral bridges. Soil Dyn. Earthq. Eng. 66, 42–55 (2014). https://doi.org/10.1016/j.soildyn.2014.06.033

    Article  Google Scholar 

  41. Shirato, M.; Koseki, J.; Fukui, J.: A new nonlinear hysteretic rule for Winkler type soil-pile interaction springs that considers loading pattern dependency. Soils Found. 46, 173–188 (2006)

    Article  Google Scholar 

  42. Priestley, M.J.N.; Calvi, G.M.; Kowalsky, M.J.: Displacement-Based Seismic Design of Structures. IUSS Press, Pavia (2007)

    Google Scholar 

  43. Lakhade, S.O.; Kumar, R.; Jaiswal, O.R.: Estimation of response reduction factor of RC frame staging in elevated water tanks using nonlinear static procedure. Struct. Eng. Mech. 62, 209–224 (2017). https://doi.org/10.12989/sem.2017.62.2.209

    Article  Google Scholar 

  44. Kumbhar, O.G.; Kumar, R.: Effect of modeling assumptions on seismic performance of RC building. In: Proceedings of Structural Engineering Convention (SEC 2016), CSIR-SERC., Chennai, India (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrabony Adhikary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deoda, V.R., Adhikary, S., Kumar, R. et al. New Modelling Methodology for Seismic Design of Precast Structures and Performance Evaluation Considering Soil–Foundation System. Arab J Sci Eng 44, 8305–8324 (2019). https://doi.org/10.1007/s13369-019-04035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04035-x

Keywords

Navigation