Skip to main content
Log in

Analysis of Load Sharing Response and Prediction of Interaction Behaviour in Piled Raft Foundation

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Piled raft foundation is anticipated to show high load carrying capacity through partial load sharing between the pile and the raft components. But this complex load sharing behaviour due to the presence of interaction effects is not well known, and there is a scarcity of proper illustration and correlation among the interaction and load sharing factors. In the present study, prediction models are developed to estimate and correlate the load sharing factors and the interaction factors. 3D finite element modelling is performed for different foundation types in clayey soil underlain by sandy soil taking various design parameters. The nonlinear behaviour of the piled raft foundation, the load sharing factors and the interaction factors for every foundation types are evaluated, and a predicted model is suggested. The predicted expressions are also validated with the calculated results from the numerical analysis to a better goodness of fit. A proposed model is then suggested for the design of the piled raft foundation considering both the safety and serviceability conditions. The proposed simplified model provides an easy solution for the design of the piled raft foundation subjected to vertical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

Q PR :

Load carrying capacity of piled raft

Q P :

Load carrying capacity of pile

Q R :

Load carrying capacity of raft

Q UR :

Load carrying capacity of unpiled raft

Q GP :

Load carrying capacity of group pile

ξ PR :

Load distribution coefficient

Q PR,ult :

Ultimate load carrying capacity of piled raft

Q GP,ult :

Ultimate load carrying capacity of group pile

Q UR,ult :

Ultimate load carrying capacity of unpiled raft

w :

Settlement

B R :

Width of raft

d :

Diameter of pile

n :

Number of pile under the raft

s :

Spacing between the piles

α PR :

Load sharing ratio

β p–p :

Pile-to-pile interaction factor

Q SP :

Load carrying capacity of single pile

β p–r :

Pile-to-raft interaction factor

Q PR-GP :

Load carrying capacity of pile in a piled raft

β r–p :

Raft-to-pile interaction factor

Q PR-R :

Load carrying capacity of raft in a piled raft

\( \varphi \) :

Load capacity ratio

FSPR :

Factor of safety for piled raft

FSGP :

Factor of safety for group pile

FSUR :

Factor of safety for unpiled raft

Q a :

Applied load

FSPR-GP :

Factor of safety for pile group in the piled raft

FSPR-R :

Factor of safety for raft in the piled raft

References

  1. Poulos, H.G.; Small, J.C.; Chow, H.: Piled raft foundation for tall buildings. Geotech. Eng. J. SEAGS AGSSEA 46(2), 78–84 (2011)

    Google Scholar 

  2. Yamashita, K.; Hamada, J.; Yamada, T.: Field measurements on piled rafts with grid-form deep mixing walls on soft ground. Geotech. Eng. J. SEAGS AGSSEA 42(2), 1–10 (2011)

    Google Scholar 

  3. Yamashita, K.; Hamada, J.; Onimaru, S.; Higashino, M.: Seismic behavior of piled raft with ground improvement supporting a base-isolated building on soft ground in Tokyo. Soils Found. 52(5), 1000–1015 (2012)

    Article  Google Scholar 

  4. Unsever, Y.S.; Matsumoto, T.; Ozkan, M.Y.: Numerical analyses of load tests on model foundations in dry sand. Comput. Geotech. 63, 255–266 (2015)

    Article  Google Scholar 

  5. Horikoshi, K.; Randolph, M.F.: Centrifuge modelling of piled raft foundations on clay. Geotechnique 46(4), 741–752 (1996)

    Article  Google Scholar 

  6. Katzenbach, R.; Schmitt, A.; Turek, J.: Assessing settlement of high-rise structures by 3D simulations. Comput. Aided Civ Infrastruct. Eng. 20(3), 221–229 (2005)

    Article  Google Scholar 

  7. de Sanctis, L.; Mandolini, A.: Bearing capacity of piled rafts on soft clay soils. J. Geotech. Geoenviron. Eng. 132(12), 1600–1610 (2006)

    Article  Google Scholar 

  8. Bieniawski, Z.T.: Engineering classification of jointed rock masses. Civ. Eng. S. Afr. 15(12), 343–353 (1973)

    Google Scholar 

  9. Serafim, J.L.: Consideration of the geomechanical classification of Bieniawski. In: Proceedings of the International Symposium on Engineering Geology and Underground Construction, vol. 1, pp. 33–44 (1983)

  10. Randolph, M.F.: Design methods for pile groups and piled rafts. In: Proceedings of the 13th ICSMGE, vol. 5, pp. 61–82 (1994)

  11. Clancy, P.; Randolph, M.F.: Simple design tools for piled raft foundations. Geotechnique 46(2), 313–328 (1996)

    Article  Google Scholar 

  12. Katzenbach, R.; Arslan, U.; Moormann, C.: 13 Piled raft foundation projects in Germany. In: Design applications of raft foundations (2000). https://doi.org/10.1680/daorf.27657.0013

  13. Giretti, D.: Modeling of piled raft foundation in sand. Ph.D. thesis, Ferrara University, Italy (2010)

  14. Yamashita, K.; Hamada, J.; Soga, Y.: Settlement and load sharing of piled raft of a 162 m high residential tower. In: Deep Foundations and Geotechnical in Situ Testing, pp. 26–33 (2010)

  15. Park, D.; Lee, J.: Comparative analysis of various interaction effects for piled rafts in sands using centrifuge tests. J. Geotech. Geoenviron. Eng. 141(1), 04014082 (2014)

    Article  Google Scholar 

  16. Poulos, H.G.; Davis, E.H.: Pile foundation analysis and design. Wiley, New York (1980)

    Google Scholar 

  17. Burland, J.B.: Piles as settlement reducers. In: 18th Italian Cong Soil Mechanics, Pavia (1995)

  18. Clancy, P.; Randolph, M.F.: An approximate analysis procedure for piled raft foundations. Int. J. Numer. Anal. Methods Geomech. 17(12), 849–869 (1993)

    Article  Google Scholar 

  19. Poulos, H.G.: Analysis of piled strip foundations. Comput. Methods Adv. Geomech. 1, 183–191 (1991)

    Google Scholar 

  20. Viggiani, C.: Pile groups and piled rafts behaviour. In: Proceedings of the Deep Foundations on Bored and Auger Piles, pp. 77–91 (1998)

  21. Hain, S.J.; Lee, I.K.: The analysis of flexible raft-pile systems. Geotechnique 28(1), 65–83 (1978)

    Article  Google Scholar 

  22. Reul, O.; Randolph, M.F.: Design strategies for piled rafts subjected to nonuniform vertical loading. J. Geotech. Geoenviron. Eng. 130(1), 1–13 (2004)

    Article  Google Scholar 

  23. Burland, L.B.; Broms, B.; de Mello, V.F.B.: Behaviour of foundations and structures. In: Proceedings of the 7th International Conference on SMFE, Tokyo, vol. 1, pp. 495–46 (1977)

  24. Poulos, H.G.: Piled raft foundations: design and applications. Geotechnique 51(2), 95–114 (2001)

    Article  Google Scholar 

  25. Liu, J.L.: Cap–pile–soil interaction of bored pile groups. In: Proceedings of the 11th International Conference on SMFE, San Francisco, vol. 3, pp. 1433–1436 (1985)

  26. Long, P.D.: Footings with settlement-reducing piles in noncohesive soil. Ph.D. thesis, Chalmers University of Technology, Gothenburg, Sweden (1993)

  27. Horikoshi, K.; Randolph, M.F.: A contribution to the optimum design of piled rafts. Geotechnique 48(3), 301–317 (1998)

    Article  Google Scholar 

  28. Conte, G.; Mandolini, A.; Randolph, M.F.: Centrifuge modelling to investigate the performance of piled rafts. In: Proceedings of the 4th International Geotechnical Seminar, Ghent, vol. 1, pp. 359–366 (2003)

  29. Lee, J.; Park, D.; Park, D.; Park, K.: Estimation of load-sharing ratios for piled rafts in sands that include interaction effects. Comput. Geotech. 63, 306–314 (2015)

    Article  Google Scholar 

  30. Lee, J.; Salgado, R.: Estimation of bearing capacity of circular footings on sands based on cone penetration test. J. Geotech. Geoenviron. Eng. 131(4), 442–452 (2005)

    Article  Google Scholar 

  31. Han, J.; Ye, S.L.: A field study on the behavior of a foundation underpinned by micropiles. Can. Geotech. J. 43(1), 30–42 (2006)

    Article  Google Scholar 

  32. Poulos, H.G.: 16. Practical design procedures for piled raft foundations. In: Design applications of raft foundations (2000). https://doi.org/10.1680/daorf.27657.0016

  33. Lee, J.H.; Salgado, R.: Determination of pile base resistance in sands. J. Geotech. Geoenviron. Eng. 125(8), 673–683 (1999)

    Article  Google Scholar 

  34. Cerato, A.B.; Lutenegger, A.J.: Bearing capacity of square and circular footings on a finite layer of granular soil underlain by a rigid base. J. Geotech. Geoenviron. Eng. 132(11), 1496–1501 (2006)

    Article  Google Scholar 

  35. Lee, J.; Park, D.; Choi, K.: Analysis of load sharing behavior for piled rafts using normalized load response model. Comput. Geotech. 57, 65–74 (2014)

    Article  Google Scholar 

  36. Cooke, R.W.: Piled raft foundations on stiff clays—a contribution to design philosophy. Geotechnique 36(2), 169–203 (1986)

    Article  Google Scholar 

  37. Kumar, A.; Choudhury, D.: Development of new prediction model for capacity of combined pile-raft foundations. Comput. Geotech. 97, 62–68 (2018)

    Article  Google Scholar 

  38. Kondner, R.L.: Hyperbolic stress-strain response: cohesive soils. J. Soil Mech. Found. Div. 89(1), 115–144 (1963)

    Google Scholar 

  39. Akbas, S.O.; Kulhawy, F.H.: Axial compression of footings in cohesionless soils. I: load settlement behavior. J. Geotech. Geoenviron. Eng. 135(11), 1562–1574 (2009)

    Article  Google Scholar 

  40. Dithinde, M.; Phoon, K.K.; De Wet, M.; Retief, J.V.: Characterization of model uncertainty in the static pile design formula. J. Geotech. Geoenviron. Eng. 137(1), 70–85 (2010)

    Article  Google Scholar 

  41. Poulos, H.G.: Pile behaviour—theory and application. Geotechnique 39(3), 365–415 (1989)

    Article  Google Scholar 

  42. Nguyen, D.D.C.; Jo, S.B.; Kim, D.S.: Design method of piled-raft foundations under vertical load considering interaction effects. Comput. Geotech. 47, 16–27 (2013)

    Article  Google Scholar 

  43. Lee, J.; Kim, Y.; Jeong, S.: Three-dimensional analysis of bearing behavior of piled raft on soft clay. Comput. Geotech. 37(1–2), 103–114 (2010)

    Article  Google Scholar 

  44. Jeong, S.; Cho, J.: Proposed nonlinear 3-D analytical method for piled raft foundations. Comput. Geotech. 59, 112–126 (2014)

    Article  Google Scholar 

  45. Sinha, A.; Hanna, A.M.: 3D numerical model for piled raft foundation. Int. J. Geomech. 17(2), 04016055 (2016)

    Article  Google Scholar 

  46. Hibbit, H.D.; Karlsson, B.L.; Sorrensen, P.: Abaqus Theory Manual. SIMULIA, Providence (2007)

    Google Scholar 

  47. Rose, A.V.; Taylor, R.N.; El Naggar, M.H.: Numerical modelling of perimeter pile groups in clay. Can. Geotech. J. 50(3), 250–258 (2013)

    Article  Google Scholar 

  48. Mandolini, A.: Design of piled raft foundations: practice and development. In: Proceedings of Deep Foundations on Bored and Auger Piles—BAP IV, Ghent, Belgium, pp. 2–4 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plaban Deb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, P., Pal, S.K. Analysis of Load Sharing Response and Prediction of Interaction Behaviour in Piled Raft Foundation. Arab J Sci Eng 44, 8527–8543 (2019). https://doi.org/10.1007/s13369-019-03936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03936-1

Keywords

Navigation