Skip to main content

Advertisement

Log in

Numerical and Experimental Study of the Aerothermal Characteristics in Solar Chimney Power Plant with Hyperbolic Chimney Shape

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Solar chimney power plant (SCPP) is an attractive way to produce electricity in the high solar radiations zones. It consists of three main components: collector, chimney and turbine. The chimney is considered as the most expensive part of the SCPP. This is due to the requirement of important height to achieve suitable performance. In this paper, a new chimney design of hyperbolic shape is proposed. The design is optimized by analyzing the impact of the divergence radius of the chimney on the SCPP performance using a 2D computational fluid dynamics code. For this end, the ratio of the hyperbolic chimney radius over the chimney height was varied from 0 to 0.3. Computational results were validated against test data from a developed experimental prototype. The comparison of the proposed designs with a conventional solar chimney power plant shows a significant performance improvement. In fact, the increase in the divergence chimney radius has led to more advanced power output. Specially, a rise of 295% of the total system efficiency is found when the divergence radius is set to 15 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

Abbreviations

\(A_{\mathrm{c}}\) :

Collector area \(\hbox {(m}^{2})\)

\(A_{\mathrm{ch}}\) :

Area of the chimney entrance section \(\hbox {(m}^{2})\)

\(\hbox {c}_{\mathrm{p}}\) :

Specific heat capacity of the air \(\hbox {(J kg}^{-1})\)

h :

Convection heat transfer \(\hbox {(W m}^{-2} \hbox {K}^{-1})\)

\(H_{\mathrm{c}}\) :

Collector height (m)

\(H_{\mathrm{ch}}\) :

Chimney height (m)

k :

Turbulent kinetic energy \(\hbox {(m}^{2}~\hbox {s}^{-2})\)

\(\dot{{m}}\) :

Mass flow rate \(\hbox {(kg s}^{-1})\)

p :

Static pressure (Pa)

\(P_{\mathrm{po}}\) :

Potential power output (W)

Pr:

Prandtl number (Dimensionless)

r :

Radial coordinate (m)

R :

Radius of the hyperbolic divergence (m)

\(R_{\mathrm{c}}\) :

Collector radius (m)

\(R_{\mathrm{ch}}\) :

Radius of the Chimney section (m)

\(R_{\mathrm{H}}\) :

Ratio of the radius and height of the hyperbolic chimney (Dimensionless)

t :

Time (h)

T :

Temperature (K)

\(T_{0}\) :

Ambient temperature (K)

\(T_{\mathrm{sky}}\) :

Sky temperature (K)

u :

Radial velocity \(\hbox {(m~s}^{-1})\)

V :

Air velocity \(\hbox {(m~s}^{-1})\)

\(v_{\mathrm{ch}}\) :

Air velocity at the chimney entrance \(\hbox {(m~s}^{-1})\)

\(v_{\mathrm{out}}\) :

Air velocity at the chimney exit \(\hbox {(m~s}^{-1})\)

w :

Axial velocity \(\hbox {(m~s}^{-1})\)

z :

Axial coordinate (m)

\(\beta \) :

Thermal expansion coefficient \(\hbox {(K}^{-1})\)

\(\Delta T\) :

Temperature rise in the collector (K)

\(\Delta p\) :

Pressure drop in the chimney (Pa)

\(\varepsilon \) :

Dissipation rate of turbulent kinetic energy \(\hbox {(m}^{2}~\hbox {s}^{-3})\)

\(\lambda \) :

Thermal conductivity of the air \(\hbox {(W~m}^{-1} \hbox {K}^{-1})\)

\(\mu \) :

Dynamic viscosity \(\hbox {(Pa~s}^{-1})\)

\(\mu _{\mathrm{t}} \) :

Turbulent viscosity \(\hbox {(Pa s}^{-1})\)

\(\rho \) :

Density of the air \(\hbox {(kg~m}^{-3})\)

\({\rho }_0 \) :

Reference density \(\hbox {(kg~m}^{-3})\)

\({\rho }_{{\mathrm{ch}}} \) :

Density at the chimney entrance \(\hbox {(kg~m}^{-3})\)

\({\eta }_{\mathrm{c}} \) :

Collector efficiency (Dimensionless)

\({\eta }_{{\mathrm{ch}}} \) :

Chimney efficiency (Dimensionless)

References

  1. Ilten, N.; Utlu, Z.; Yalcin, E.; Yalcin, H.: Investigation of environmental impacts of energy 459 utilization in space heating. Arab. J. Sci. Eng. 38(2809–2820), 460 (2013)

    Google Scholar 

  2. Azarpour, A.; Suhaimi, S.; Zahedi, G.; Bahadori, A.: A review on the drawbacks of renewable 463 energy as a promising energy source of the future. Arab. J. Sci. Eng. 464(38), 317–328 (2013)

    Article  Google Scholar 

  3. Schlaich, Jr; Bergermann, R.; Schiel, W.; Weinrebe, G.: Design of commercial solar updraft tower systems–utilization of solar induced convective flows for power generation. J. Solar Energy Eng. 127, 117–24 (2005)

    Article  Google Scholar 

  4. Zhou, X.; Yang, J.; Xiao, B.; Hou, G.: Experimental study of temperature field in a solar chimney power setup. Appl. Therm. Eng. 27, 2044–50 (2007)

    Article  Google Scholar 

  5. Guo, P.; Wang, Y.; Meng, Q.; Li, J.: Experimental study on an indoor scale solar chimney setup in an artificial environment simulation laboratory. Appl. Therm. Eng. 107, 818–26 (2016)

    Article  Google Scholar 

  6. Gholamalizadeh, E.; Mansouri, S.: A comprehensive approach to design and improve a solar chimney power plant: a special case-Kerman project. Appl. Energy 102, 975–82 (2013)

    Article  Google Scholar 

  7. Ghalamchi, M.; Ahanj, T.: Numerical simulation for achieving optimum dimensions of a solar chimney power plant. Sustain. Energy 1, 26–31 (2013)

    Google Scholar 

  8. Haaf, W.: Solar chimneys: Part II: preliminary test results from the Manzanares pilot plant. Int. J. Sustain. Energy 2, 141–61 (1984)

    Google Scholar 

  9. Haaf, W.; Friedrich, K.; Mayr, G.; Schlaich, J.: Solar chimneys part I: principle and construction of the pilot plant in Manzanares. Int. J. Solar Energy 2, 3–20 (1983)

    Article  Google Scholar 

  10. Tingzhen, M.; Wei, L.; Guoliang, X.: Analytical and numerical investigation of the solar chimney power plant systems. Int. J. Energy Res. 30, 861–73 (2006)

    Article  Google Scholar 

  11. Hu, S.; Leung, D.Y.; Chan, J.C.: Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. Energy 120, 1–11 (2017)

    Article  Google Scholar 

  12. Patel, S.K.; Prasad, D.; Ahmed, M.R.: Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant. Energy Convers. Manag. 77, 424–31 (2014)

    Article  Google Scholar 

  13. Ayadi, A.; Driss, Z.; Bouabidi, A.; Abid, M.S.: Experimental and numerical study of the impact of the collector roof inclination on the performance of a solar chimney power plant. Energy Build. 139, 263–76 (2017)

    Article  Google Scholar 

  14. Gholamalizadeh, E.; Kim, M.-H.: CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof. Energy 107, 661–7 (2016)

    Article  Google Scholar 

  15. Ayadi, A.; Bouabidi, A.; Driss, Z.; Abid, M.S.: Experimental and numerical analysis of the collector roof height effect on the solar chimney performance. Renew. Energy 115, 649–662 (2017)

    Article  Google Scholar 

  16. Pretorius, J.P.: Optimization and control of a large-scale solar chimney power plant. University of Stellenbosch, Stellenbosch (2007)

  17. Ayadi, A.; Driss, Z.; Bouabidi, A.; Nasraoui, H.; Bsisa, M.; Abid, M.S.: A computational and an experimental study on the effect of the chimney height on the thermal characteristics of a solar chimney power plant. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 232, 503–516 (2017)

    Article  Google Scholar 

  18. Ayadi, A.; Driss, Z.; Bouabidi, A.; Abid, M.S.: Effect of the number of turbine blades on the air flow within a solar chimney power plant. Proc. Inst. Mech. Eng. Part A: J. Power Energy 232(4), 425–436 (2018)

    Article  Google Scholar 

  19. Cao, F.; Liu, Q.; Yang, T.; Zhu, T.; Bai, J.; Zhao, L.: Full-year simulation of solar chimney power plants in Northwest China. Renew. Energy 119, 421–428 (2018)

    Article  Google Scholar 

  20. Fadaei, N.; Kasaeian, A.; Akbarzadeh, A.; Hashemabadi, S.H.: Experimental investigation of solar chimney with phase change material (PCM). Renew. Energy 123, 26–35 (2018)

    Article  Google Scholar 

  21. Al-Kayiem, H.H.; Sreejaya, K.; Chikere, A.O.: Experimental and numerical analysis of the influence of inlet configuration on the performance of a roof top solar chimney. Energy Build. 159, 89–98 (2018)

    Article  Google Scholar 

  22. Bouabidi, A.; Ayadi, A.; Nasraoui, H.; Driss, Z.; Abid, M.S.: Study of solar chimney in Tunisia: Effect of the chimney configurations on the local flow characteristics. Energy Build. 169, 27–38 (2018)

    Article  Google Scholar 

  23. Hassan, A.; Ali, M.; Waqas, A.: Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle. Energy 142, 411–25 (2018)

    Article  Google Scholar 

  24. Ayadi, A.; Nasraoui, H.; Bouabidi, A.; Driss, Z.; Bsisa, M.; Abid, M.S.: Effect of the turbulence model on the simulation of the air flow in a solar chimney. Int. J. Therm. Sci. 130, 423–34 (2018)

    Article  Google Scholar 

  25. Ayadi, A.; Nasraoui, H.; Driss, Z.; Bouabidi, A.; Abid, M.S.: Unsteady state of a solar chimney power plant accoupled with a turbine: case study. J. Eng. Des. Technol. 16, 244–55 (2018)

    Google Scholar 

  26. Ayadi, A.; Bouabidi, A.; Driss, Z.; Abid, M.S.: Study of the Collector Diameter Effect on the Characteristics of the Solar Chimney Power Plant. CFD Techniques and Thermo-Mechanics Applications, pp. 189–203. Springer, Berlin (2018)

    Google Scholar 

  27. Toghraie, D.; Karami, A.; Afrand, M.; Karimipour, A.: Effects of geometric parameters on the performance of solar chimney power plants. Energy 162, 1052–61 (2018)

    Article  Google Scholar 

  28. Najm, O.A.; Shaaban, S.: Numerical investigation and optimization of the solar chimney collector performance and power density. Energy Convers. Manag. 168, 150–61 (2018)

    Article  Google Scholar 

  29. Rabehi, R.; Chaker, A.; Ming, T.; Gong, T.: Numerical simulation of solar chimney power plant adopting the fan model. Renew. Energy 126, 1093–101 (2018)

    Article  Google Scholar 

  30. Harte, R.; Graffmann, M.; Krätzig, W.B.: Optimization of solar updraft chimneys by nonlinear response analysis. Applied Mechanics and Materials. Trans Tech Publ. pp. 25–34 (2013)

  31. Rahui, S.; Bousshine, P.L.: Analysis and computational study of a high chimney tower for solar energy. J. Mech. Civ. Eng. 13, 33–41 (2016)

    Google Scholar 

  32. Harte, R.; Van Zijl, G.P.: Structural stability of concrete wind turbines and solar chimney towers exposed to dynamic wind action. J. Wind Eng. Ind. Aerodyn. 95, 1079–96 (2007)

    Article  Google Scholar 

  33. Sancibrian, R.; Lombillo, I.; Sarabia, E.; Boffill, Y.; Wong, H.; Villegas, L.: Dynamic identification and condition assessment of an old masonry chimney by using modal testing. Procedia Eng. 199, 3410–5 (2017)

    Article  Google Scholar 

  34. Aoki, T.; Sabia, D.; Rivella, D.; Muto, H.: Dynamic identification and model updating of the Howa Brick Chimney, Tokoname, Japan. WIT Trans. Built Environ. 83, 265–275 (2005)

    Google Scholar 

  35. Masciotta, M.G.; Ramos, L.F.; Lourenço, P.B.; Vasta, M.: Damage identification and seismic vulnerability assessment of a historic masonry chimney. Ann. Geophys. 60, S0442 (2017)

    Article  Google Scholar 

  36. Livaoglu, R.: The numerical and empirical evaluation of chimneys considering soil structure interaction and high-temperature effects. Soil Dyn. Earthq. Eng. 66, 178–90 (2014)

    Article  Google Scholar 

  37. Li, S.; Eisenman, J.D.; Mikulec, D.: Prediction of ovalling frequency for FRP chimney liners with circumferential stiffeners. J. Thermoplast. Compos. Mater. 25, 439–51 (2012)

    Article  Google Scholar 

  38. Lupi, F.: A New Aerodynamic Phenomenon and Its Effects on the Design of Ultra-High Cylindrical Towers. Shaker, Berlin (2013)

    Book  Google Scholar 

  39. Zuo, L.; Ding, L.; Chen, J.; Liu, Z.; Qu, N.; Zhou, X.; et al.: The effect of different structural parameters on wind supercharged solar chimney power plant combined with seawater desalination. Energy Convers. Manag. 176, 372–83 (2018)

    Article  Google Scholar 

  40. Bedon, C.; Bergamo, E.; Izzi, M.; Noè, S.: Prototyping and validation of MEMS accelerometers for structural health monitoring–the case study of the pietratagliata cable-stayed bridge. J. Sens. Actuator Netw. 7, 30 (2018)

    Article  Google Scholar 

  41. Dhahri, A.; Omri, A.; Orfi, J.: Numerical study of a solar chimney power plant. Res. J. Appl. Sci. Eng. Technol. 8, 1953–65 (2014)

    Article  Google Scholar 

  42. Li, J.-Y.; Guo, P.-H.; Wang, Y.: Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines. Renew. Energy 47, 21–8 (2012)

    Article  Google Scholar 

  43. Asnaghi, A.; Ladjevardi, S.M.: Solar chimney power plant performance in Iran. Renew. Sustain. Energy Rev. 16, 3383–3390 (2012)

    Article  Google Scholar 

  44. FLUENT, Documentation Manual - FLUENT 17.0

  45. Zou, Z.; He, S.: Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system. Energy Convers. Manag. 95, 59–68 (2015)

    Article  Google Scholar 

  46. Schlaich, J.: The Solar Chimney: Electricity from the Sun. Edition Axel Menges, Fellbach (1995)

    Google Scholar 

  47. Dehghani, S.; Mohammadi, A.H.: Optimum dimension of geometric parameters of solar chimney power plants-a multi-objective optimization approach. Solar Energy 105, 603–12 (2014)

    Article  Google Scholar 

  48. Kroger, D.; Blaine, D.: Analysis of the driving potential of a solar chimney power plant. SAI Mech E R&D J. 15, 85–94 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haythem Nasraoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasraoui, H., Driss, Z., Ayedi, A. et al. Numerical and Experimental Study of the Aerothermal Characteristics in Solar Chimney Power Plant with Hyperbolic Chimney Shape. Arab J Sci Eng 44, 7491–7504 (2019). https://doi.org/10.1007/s13369-019-03821-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03821-x

Keywords

Navigation