Skip to main content

Advertisement

Log in

Facies Analysis and Sequence Stratigraphy of Al-Kharrar Lagoon Coastal Sediments, Rabigh Area, Saudi Arabia: Impact of Sea-Level and Climate Changes on Coastal Evolution

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study employs the results of facies analyses and sequence stratigraphy of the coastal plain sediments of Al-Kharrar Lagoon, Rabigh, Saudi Arabia, to interpret the impact of Late Quaternary sea-level and climate changes on sedimentation, facies distribution and Red Sea coastal evolution. Facies analysis of the sediments that crop out in a recently excavated quarry section and those recovered from six shallow cores obtained from the tidal flat south Al-Kharrar Lagoon enabled identifying four facies associations characterizing fluvial, intertidal–supratidal, lagoonal and intertidal flat deposits. Facies architecture and sequence stratigraphic interpretations indicate two distinct depositional stages. The first stage included the deposition of marine-influenced gravel-dominated fluvial channel deposits interdigitating with or overlain by grey lagoonal mud and fine sands suggesting deposition during a period of progressive sea-level rise and enhanced precipitation. The second stage records deposition of prograding intertidal–supratidal deposits containing calcareous nodules and mottles and evaporite minerals at quarry section suggesting deposition during a sea-level fall under an arid climate. The results of this study are correlated with the Late Quaternary periods of humidity and aridity. It is found that the first stage corresponds to the postglacial early–middle Holocene sea-level rise and wet climate, whereas the second stage corresponds to the mid- to late Holocene isostatically controlled sea-level fall and arid climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padmalal, D.; Nair, K.M.; Kumaran, K.P.N.; Sajan, K.; Mohan, S.V.; Maya, K.; Santhosh, V.; Anooja, S.; Limaye, R.B.: Climate and sea-level changes in a Holocene Bay Head Delta, Kerala, Southwest coast of India. In: Sundaresan, J., Sreekesh, S., Ramanathan, A.L., Sonnenschein, L., Boojh, R. (eds.) Climate Change and Island and Coastal Vulnerability, pp. 191–208. Springer, New York (2013)

    Chapter  Google Scholar 

  2. Lambeck, K.; Roubya, H.; Purcella, A.; Sunc, Y.; Sambridgea, M.: Sea-level and global ice volumes from the Last Glacial Maximum to the Holocene. PNAS 111, 15296–15303 (2014)

    Article  Google Scholar 

  3. Kakroodi, A.A.; Leroy, S.A.G.; Kroonenberg, S.B.; Lahijani, H.A.K.; Mohammadian, H.; Boomer, I.; Goorabi, A.: Late Pleistocene and Holocene sea-level change and coastal paleoenvironment evolution along the Iranian Caspian shore. Mar. Geol. 361, 111–125 (2015)

    Article  Google Scholar 

  4. Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A.: Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: sea-level variability and improvements in the definition of the isostatic signal. Earth Sci. Rev. 155, 172–197 (2016)

    Article  Google Scholar 

  5. Rholing, E.J.; Grant, K.; Hemleben, Ch; Siddall, M.; Hoogakker, B.A.A.; Bolshaw, M.; Kucera, M.: High rates of sea-level rise during the last interglacial period. Nat. Geosci. 1, 38–42 (2008)

    Article  Google Scholar 

  6. Mauz, B.; Bungenstock, F.: How to reconstruct trends of late Holocene relative sea-level: a new approach using tidal flat clastic sediments and optical dating. Mar. Geol. 237(3–4), 225–237 (2007)

    Article  Google Scholar 

  7. Goodwin, I.D.; Harvey, N.: Subtropical sea-level history from coral microatolls in the Southern Cook Islands, since 300 AD. Mar. Geol. 253, 14–25 (2008)

    Article  Google Scholar 

  8. Hein, C.J.; FitzGerald, D.M.; Milne, G.A.; Bard, K.; Fattovich, R.: Evolution of a Pharaonic harbor on the Red Sea: implications for coastal response to changes in sea-level and climate. Geol. Soc. Am. 39(7), 687–690 (2012)

    Google Scholar 

  9. de Menocal, P.; Ortiz, J.; Guilderson, T.; Sarnthein, M.: Abrupt onset and termination of the African humid period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000)

    Article  Google Scholar 

  10. Mitrovica, J.X.; Milne, G.A.: On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quat. Sci. Rev. 21, 2179–2190 (2002)

    Article  Google Scholar 

  11. Cheddadi, R.; Yu, G.; Guiot, J.; Harrison, S.P.; Prentice, I.C.: The climate of Europe 6000 years ago. Clim. Dyn. 13, 1–9 (1997)

    Article  Google Scholar 

  12. Peyron, O.; Goring, S.; Dormoy, I.; Kotthoff, U.; Pross, J.; de Bealieu, J.L.; Drescher-Schneider, R.; Magny, M.: Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece). Holocene 21, 131–146 (2011)

    Article  Google Scholar 

  13. Almogi-Labin, A.; Hemleben, C.; Meischner, D.; Erlenkeuser, H.: Paleoenvironmental events during the last 13,000 years in the Central Red Sea as recorded by pteropoda. Paleoceanography 6, 83–98 (1991)

    Article  Google Scholar 

  14. Hemleben, C.; Meischner, D.; Zhan, R.; Almogi-Labin, A.; Erlenkeuser, H.; Hiller, B.: Three hundred eighty thousand year long stable isotope and faunal records from the Red Sea: influence of global sea-level change on hydrography. Paleoceanography 11, 147–56 (1996)

    Article  Google Scholar 

  15. Arz, H.W.; Lamy, L.; Pätzold, J.; Müller, P.J.; Prins, M.: Mediterranean moisture source for an early-Holocene humid period in the northern Red Sea. Science 300, 118–121 (2003)

    Article  Google Scholar 

  16. Siddall, M.; Smeed, D.A.; Hemleben, C.; Rohling, E.J.; Schmelzer, I.; Peltier, W.R.: Understanding the Red Sea response to sea-level. Earth Planet Sci Let. 225, 421–434 (2004)

    Article  Google Scholar 

  17. Edelman-Furstenberg, Y.; Almogi-Labin, A.; Hemleben, C.: Palaeoceanographic evolution of the central Red Sea during the late Holocene. Holocene 19, 117–127 (2009)

    Article  Google Scholar 

  18. Trommer, G.; Siccha, M.; Rohling, E.J.; Grant, K.; van der Meer, M.T.J.; Schouten, S.; Hemleben, C.; Kucera, M.: Millennial-scale variability in Red Sea circulation in response to Holocene insolation forcing. Paleoceanography 25, PA3203 (2010)

    Article  Google Scholar 

  19. Abu-Zied, R.H.; Bantan, R.A.: Palaeoenvironment, palaeoclimate and sea-level changes in the Shuaiba Lagoon during the late Holocene (last 3.6 ka), eastern Red Sea coast, Saudi Arabia. Holocene 25(8), 1301–1312 (2015)

    Article  Google Scholar 

  20. Bailey, G.N.: The Red Sea, coastal landscapes and hominin dispersals. In: Petraglia, M.D., Rose, J.I. (eds.) The Evolution of Human Populations in Arabia, pp. 15–37. Springer, Dordrecht (2009)

    Google Scholar 

  21. Lambeck, K.; Purcell, A.; Flemming, N.; Vita-Finzi, C.; Alsharekh, A.; Bailey, G.: Sea-level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa. Quat. Sci. Rev. 30, 3542–3574 (2011)

    Article  Google Scholar 

  22. Marinova, E.; Linseele, V.; Vermeersch, P.: Holocene environment and subsistence patterns near the Tree Shelter, Red Sea Mountains, Egypt. Quat. Res. 70, 392–397 (2008)

    Article  Google Scholar 

  23. Engel, M.; Brückner, H.; Pint, A.; Wellbrock, K.; Ginau, A.; Voss, P.; Grottker, M.; Klasen, N.; Frenzel, P.: The early Holocene humid period in NW Saudi Arabia -Sediments, microfossils and palaeo-hydrological modeling. Quat. Intern. 266, 131–141 (2012)

    Article  Google Scholar 

  24. Ghandour, I.M.; Al-Washmi, H.A.; Haredy, R.A.; Zubairi, A.: Facies evolution and depositional model of an arid microtidal coast: example from the coastal plain at the mouth of Wadi Al-Hamd, Red Sea, Saudi Arabia. Turk. J. Earth Sci. 25, 256–273 (2016)

    Article  Google Scholar 

  25. Rasul, N.M.A.: Lagoon sediments of the Eastern Red Sea: distribution processes, pathways and patterns. In: Rasul, N.M.A., Stewart, I.C.F. (eds.) The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin, pp. 281–316. Springer, Heidelberg (2015)

    Google Scholar 

  26. Kvale, E.P.; Cutright, J.; Bllodeau, D.; Archer, A.; Johnson, H.R.; Pickett, B.: Analysis of modern tides and implications for ancient tidalites. Cont. Shelf Res. 15, 1921–1943 (1995)

    Article  Google Scholar 

  27. Semeniuk, V.: Coastal forms and Quaternary processes along the arid Pilbara coast of northwestern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 49–84 (1996)

    Article  Google Scholar 

  28. Fielding, C.R.; Allen, J.P.; Alexander, J.; Gibling, M.R.: Facies model for fluvial systems in the seasonal tropics and subtropics. Geology 37, 623–626 (2009)

    Article  Google Scholar 

  29. Caldas, L.H.O.; Stattegger, K.; Vital, H.: Holocene sea-level history: evidence from coastal sediments of the northern Rio Grande do Norte Coast, NE Brazil. Mar. Geol. 228, 39–53 (2006)

    Article  Google Scholar 

  30. Da Cruz Miranda, M.C.; Rossetti, D.F.; Pessenda, R.L.C.: Quaternary paleoenvironments and relative sea-level changes in Marajó Island (Northern Brazil). Palaeogeogr. Palaeoclimatol. Palaeoecol. 282, 19–31 (2009)

    Article  Google Scholar 

  31. Parham, P.R.; Riggs, S.R.; Culver, S.J.; Mallinson, D.J.; Jack-Rink, W.; Burdette, K.: Quaternary coastal lithofacies, sequence development and stratigraphy in a passive margin setting, North Carolina and Virginia. USA. Sedimentology 60(2), 503–547 (2013)

    Article  Google Scholar 

  32. Noffke, N.; Christian, D.; Wacey, D.; Hazen, R.M.: Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13, 1103–1124 (2013)

    Article  Google Scholar 

  33. Taj, R.J.; Aref, M.A.M.; Schreiber, B.C.: The influence of microbial mats on the formation of sand volcanoes and mounds in the Red Sea coastal plain, south Jeddah, Saudi Arabia. Sed. Geol. 311, 60–74 (2014)

    Article  Google Scholar 

  34. Behairy, A.K.A.; Durgaprasada Rao, N.V.N.; El-Shater, A.: A siliciclastic coastal sabkha, Red Sea coast, Saudi Arabia. J. King Abdulaziz Univ. Mar. Sci. 2, 65–77 (1991)

    Article  Google Scholar 

  35. El Abd, Y.; Awad, M.B.: Evaporitic sediment distributions in Al-Kharrar sabkha, west Red Sea of Saudi Arabia, as revealed from the electrical soundings. Mar. Geol. 97, 137–143 (1991)

    Article  Google Scholar 

  36. Durgaprasada Rao, N.V.N.; Al-Imam, O.A.O.; Behairy, A.K.A.: Early mixed-water dolomitization in the Pleistocene reef limestones, west coast of Saudi Arabia. Sed Geol. 53, 231–245 (1987)

    Article  Google Scholar 

  37. Brown, G.F.; Schmidt, D.L.; Huffman, A.C.: Geology of the Arabian Peninsula, shield area of western Saudi Arabia. USA Geol. Surv. Prof. Pap. 560–A, 188 pp (1989)

    Google Scholar 

  38. Rabaa, S.M.A.: Geomorphological characteristics of the Red Sea coast with special emphasis on the formation of Marsas in the Sudan. In: Proceedings of a Symposium on Coastal and Marine Environments of the Red Sea, Gulf of Aden and Tropical Western Indian Ocean. pp. 53–72. University of Khartoum, Khartoum, Sudan (1980)

  39. Guilcher, A.: Red Sea coasts. In: Bird, E.C.F., Schwartz, M.L. (eds.) The World’s Coastline, pp. 713–717. Van Nostrand Reinhold, New York (1985)

    Google Scholar 

  40. Haszeldine, R.S.: Fluvial bars reconstructed from deep straight channel, Upper Carboniferous coalfield of northeast England. J. Sed. Petrol. 53, 1223–1247 (1983)

    Google Scholar 

  41. Collinson, J.D.: Alluvial sediments. In: Reading, H.G. (ed.) Sedimentary Environments: Processes, Facies and Stratigraphy, pp. 37–82. Blackwell, Cambridge (1996)

    Google Scholar 

  42. Miall, A.D.: The Geology of Fluvial Deposits. Springer, New York (1996)

    Google Scholar 

  43. Blair, T.C.: Sedimentary processes and facies of the water laid Anvil Spring Canyon alluvial fan, Death Valley, California. Sedimentology 46, 913–940 (1999)

    Article  Google Scholar 

  44. Miall, A.D.: Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev. 22, 261–308 (1985)

    Article  Google Scholar 

  45. Ashworth, P.J.; Best, J.L.; Peakall, J.; Lorsong, J.A.: The influence of aggradation rate on braided alluvial architecture: field study and physical scale modeling of the Ashburton River gravels, Canterbury Plains, New Zealand. In: Smith, N.D., Rogers, J. (eds.) Fluvial Sedimentology VI International Association of Sedimentologists Special Publication, pp. 28, 333–346. Blackwell Science, Oxford (1999)

  46. Retallack, G.J.: Soils of the Past: An Introduction to Palaeopedology. Unwin-Hyman, London (1990)

    Book  Google Scholar 

  47. Williams, C.A.; Krause, F.F.: Paleosol chronosequences and peritidal deposits of the Middle Devonian (Givetian) Yahatinda Formation, Wasootch Creek, Alberta, Canada. Bull. Canadian Petrol. Geol. 48, 1–18 (2000)

    Article  Google Scholar 

  48. Tanner, L.H., Lucas, S.G.: Calcareous paleosols of the Upper Triassic Chinle Group, Four Corners region, southwestern United States: Climatic implications. In: Alonso-Zarza, A.M., Tanner, L.H. (eds.) Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates. pp. 53–74. The Geological Society of America Special Paper 416 (2006)

  49. Cecil, C.B.: Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology 18, 533–536 (1990)

    Article  Google Scholar 

  50. Tanner, L.H.: Palustrine-lacustrine and alluvial facies of the (Norian) Owl Rock Formation (Chinle Group), Four Corners Region, southwestern U.S.A.: implications for Late Triassic paleoclimate. J. Sed. Res. 70, 1280–1289 (2000)

    Article  Google Scholar 

  51. Wieder, M.; Gvirtzman, G.; Porat, N.; Dassa, M.: Paleosols of the southern coastal plain of Israel. J. Plant Nutrit. Soil. Sci. 171, 533–541 (2008)

    Article  Google Scholar 

  52. Evans, G.; Murray, J.W.; Biggs, H.E.J.; Bate, R.; Bush, P.R.: The oceanography, ecology, sedimentology and geomorphology of parts of the Trucial Coast barrier island complex, Persian Gulf. In: Purser, B.J. (ed.) The Persian Gulf, pp. 233–278. Springer, Berlin (1973)

    Chapter  Google Scholar 

  53. Walker, R.G.; Plint, A.G.: Wave- and storm-dominated shallow marine systems. In: Walker, R.G., James, N.P. (eds.) Facies Models-Response to Sea-Level Changes, pp. 219–238. Geological Association of Canada, St. John’s (1992)

    Google Scholar 

  54. Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R.: Estuarine facies models: conceptual basis and stratigraphic implications. J. Sed. Petrol. 62, 1130–1146 (1992)

    Article  Google Scholar 

  55. Gerdes, S.: Structures left by modern microbial mats in their host sediments. In: Schiber, J., Bose, P.K., Erikson, P.G. (eds.) Atlas of Microbial Mat Features Preserved with the Clastic Rock Record, pp. 5–38. Elsevier, Amsterdam (2007)

    Google Scholar 

  56. Davies, Jr: Coastal Sedimentary Environments, 2nd edn. Springer, New York (1985)

    Book  Google Scholar 

  57. de Boer, P.L.: Intertidal sediments: composition and structure. In: Eisma, D. (ed.) Intertidal Deposits-River Mouths, Tidal Flats, and Coastal Lagoons, pp. 345–362. CRC Press, Boca Raton (1998)

    Google Scholar 

  58. Embry, A., Johannessen, A.: T-R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup Basin, Arctic Canada. In: Vorren, T.O., Bergsager, E., Dahl-stamnes, O.A., Holter, E., Johansen, B., Lie, E., Lund, T.B. (eds.) Norwegian Petroleum Society. pp. 121-146 (NPF), Special Publication (1992)

  59. Embry, A.: Transgressive–regressive (T–R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago. Can. J. Earth Sci. 30, 301–320 (1993)

    Article  Google Scholar 

  60. Shanley, K.W.; McCabe, P.J.: Perspectives on the sequence stratigraphy of continental strata. Am. Assoc. Petrol. Geol. Bull. 78, 544–568 (1994)

    Google Scholar 

  61. Olsen, T.; Steel, R.J.; Høgseth, K.; Skar, T.; Røe, S.L.: Sequential architecture in a fluvial succession: sequence stratigraphy in the Upper Cretaceous Mesaverde Group, Price Canyon, Utah. J. Sed. Res. B65, 265–280 (1995)

    Article  Google Scholar 

  62. McLaurin, B.T.; Steel, R.J.: Fourth-order nonmarine to marine sequences, middle Castlegate Formation, Book Cliffs, Utah. Geology 28, 359–362 (2000)

    Article  Google Scholar 

  63. Posamentier, H.W., Allen, G.P.: Siliciclastic sequence stratigraphy—concepts and applications. SEPM Concepts in Sedimentology and Paleontology Series 7 (1999)

  64. Mancini, M.; D’Anastasio, E.; Barbieri, M.; De Martin, P.M.: Geomorphological, paleontological and \(^{87}\)Sr/\(^{86}\)Sr isotope analyses of early Pleistocene paleoshorelines to define the uplift of Central Apennines (Italy). Quat. Res. 67, 487–501 (2007)

    Article  Google Scholar 

  65. Chaytor, J.D.; Goldfinger, C.; Meiner, M.A.; Huftile, G.J.; Romos, C.G.; Legg, M.R.: Measuring vertical tectonic motion at the intersection of the Santa Cruz Catalina Ridge and Northern Channel Islands platform, California Continental Borderland, using submerged paleoshorelines. Geol. Soc. Am. Bull. 120, 1053–1071 (2008)

    Article  Google Scholar 

  66. Helland-Hansen, W.; Martinsen, O.J.: Shoreline trajectories and sequences: description of variable epositional-dip scenarios. J. Sed. Res. 66, 670–688 (1996)

    Google Scholar 

  67. Catuneanu, O.: Principles of Sequence Stratigraphy. Elsevier, Amsterdam (2006)

    Google Scholar 

  68. Heckel, P.H.: Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic effects. In: Dennison, J.M., Ettensohn, F.R. (eds.) Tectonic and Eustatic Controls on Sedimentary Cycles, pp. 65–87. Society of Economic Paleontologists and Mineralogists, Tulsa (1994). (Concepts in Sedimentology and Paleontology)

    Chapter  Google Scholar 

  69. Mángano, G.; Buatois, L.G.; West, R.R.; Maples, C.G.: Ichnology of a Pennsylvanian equatorial tidal flat the Stull Shale Member at Waverly, Eastern Kansas. Kansas Geol. Surv. Bull. 245, 1–133 (2002)

    Google Scholar 

  70. Siddall, M.; Rohling, E.J.; Almogi-Labin, A.; Hemleben, Ch; Meischner, D.; Schmelzer, I.; Smeed, D.A.: Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003)

    Article  Google Scholar 

  71. Grant, K.M.; Rohling, E.J.; Bar-Matthews, M.; Ayalon, A.; Medina-Elizalde, M.; Bronk Ramsey, C.; Satow, C.; Roberts, A.P.: Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491, 744–747 (2012)

    Article  Google Scholar 

  72. Blue, L.: Locating the Harbour: Myos Hormos / Quseir al-Qadim: a Roman and Islamic Port on the Red Sea Coast of Egypt. Int. J. Naut. Archaeol. 36(2), 265–281 (2007)

    Article  Google Scholar 

  73. Plaziat, J.-C.; Baltzer, F.; Choukri, A.; Conchon, O.; Freytet, P.; Orszag-Sperber, F.; Purser, B.; Raguideau, A.; Reyss, J.-L.: Quaternary changes in the Egyptian Shoreline of the Northwestern Red Sea and Gulf of Suez. Quat. Int. 29(30), 11–22 (1995)

    Article  Google Scholar 

  74. Shaked, Y.; Marco, S.; Lazar, B.; Stein, M.; Cohen, C.; Sass, E.; Agnon, A.: Late Holocene Shorelines at the Gulf of Aqaba: Migrating Shorelines Under Conditions of Tectonic and Sea Level Stability. European Geosciences Union Stephan Mueller Special Publication Series, vol. 2, pp. 1–7 (2002)

  75. Peltier, W.R.: On eustatic sea level history: Last Glacial Maximum to Holocene. Quat. Sci. Rev. 21, 377–396 (2002)

    Article  Google Scholar 

  76. Jado, A.R.; Zötl, J.G.: Quaternary Period in Saudi Arabia. Volume 2: Sedimentological, Hydrogeological, Hydrochemical, Geomorphological, Geochronological and Climatological Investigations in Western Saudi Arabia. Springer, Vienna (1984)

    Book  Google Scholar 

  77. Nakada, M.; Kimura, R.; Okuno, J.; Moriwaki, K.; Miura, H.; Maemoku, H.: Late Pleistocene and Holocene melting history of the Antarctic ice sheet derived from sea-level variations. Mar. Geol. 167, 85–103 (2000)

    Article  Google Scholar 

  78. Hoelzmann, P.; Jolly, D.; Harrison, S.P.; Laarif, F.; Bonnefille, R.; Pachur, H.J.: Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Global Biogeochem. Cy. 12, 35–51 (1998)

    Article  Google Scholar 

  79. Gasse, F.: Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 19, 189–211 (2000)

    Article  Google Scholar 

  80. Enzel, Y.; Bookman, R.; Sharon, D.; Gvirtzman, H.; Dayan, U.; Ziv, B.; Stein, M.: Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat. Res. 60, 263–273 (2003)

    Article  Google Scholar 

  81. Legge, H.L.; Mutterlose, J.; Arz, H.W.: Climatic changes in the northern Red Sea during the last 22,000 years as recorded by calcareous nannofossils. Paleoceanography 21, PA1003 (2006)

    Article  Google Scholar 

  82. Almogi-Labin, A.; Perelis-Grossovicz, L.; Raab, M.: Living Ammonia from a hypersaline inland pool, Dead Sea area, Israel. J. Foram. Res. 22, 257–266 (1992)

    Article  Google Scholar 

  83. Geslin, E.; Stouff, V.; Debenay, J.-P.; Lesourd, M.: Environmental variation and foraminiferal test abnormalities. In: Martin, R.E. (ed.) Environmental Micropaleontology: The Application of Microfossils to Environmental Geology. Topics in Geobiology, vol. 15, pp. 192–215. Springer, Boston (2000)

    Chapter  Google Scholar 

  84. Parker, A.; Davies, C.; Wilkinson, T.: The early to mid-Holocene moist period in Arabia: some recent evidence from lacustrine sequences in eastern and south-western Arabia. Proc. Sem. Arab. Stud. 36, 243–255 (2006)

    Google Scholar 

  85. Neff, U.; Burns, S.J.; Mangini, A.; Mudelsee, M.; Fleitmann, D.; Matter, A.: Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290–293 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. 458-150/1434. The authors, therefore, acknowledge with thanks DSR for technical and financial support. The authors are very grateful for the reviewers and the editor for their constructive comments and editorial handling

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. Ghandour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghandour, I.M., Haredy, R.A. Facies Analysis and Sequence Stratigraphy of Al-Kharrar Lagoon Coastal Sediments, Rabigh Area, Saudi Arabia: Impact of Sea-Level and Climate Changes on Coastal Evolution. Arab J Sci Eng 44, 505–520 (2019). https://doi.org/10.1007/s13369-018-3662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3662-8

Keywords

Navigation