Skip to main content
Log in

Fly Ash Reuse as Mesoporous Ca- and Mg-Zeolitic Composites for the Seclusion of Aniline from Aqueous Solution

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This work reuses fly ash, a solid waste from cogeneration as a raw material for remediating water pollution. It presents an adsorption method of secluding aniline from wastewater by mesoporous zeolitic composites CaFZBFA and MgFZBFA synthesized from bagasse fly ash (BFA). Instrumental analyses revealed the transformation of the BFA into mesoporous zeolite composites. And pH-dependent adsorptions study showed the respective performances of the synthesized materials on the adsorption of aniline. Optimal uptakes on both adsorbents were obtained at pH 6. Langmuir isotherm model (\({R}^{2}=0.9937\) and 0.9906 for CaFZBFA and MgFZBFA, respectively) and pseudo-second-order kinetics model (\({R}^{2} = 0.9980\) for CaFZBFA and 0.9944 and MgFZBFA) best represent the adsorption processes. And the maximum monolayer adsorption capacities obtained are 34.130 mg/g and 33.220 mg/g for CaFZBFA and MgFZBFA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fagin, D.: A cancer cycle, from here to China (2013). http://www.nytimes.com/2013/01/12/opinion/a-cycle-of-contamination-and-cancer-that-wont-end.html. Accessed 23 Oct 2017

  2. NPI: Aniline (Benzenamine). http://npi.gov.au/resource/aniline-benzenamine. Accessed 23 Oct 2017

  3. Kegley, S.E.; Hill, B.R.; Orme, S.; Choi, A.H.: Aniline- Identification, toxicity, use, water pollution potential, ecological toxicity and regulatory information (2016). http://www.pesticideinfo.org/Detail_Chemical.jsp?Rec_Id=PC33847#Water. Accessed 23 Oct 2017

  4. Jing, Z.Q.; Cao, S.W.; Yu, T.; Hu, J.: Degradation characteristics of aniline with ozonation and subsequent treatment analysis. J. Chem. 2015, 1–6 (2015). https://doi.org/10.1155/2015/905921

    Article  Google Scholar 

  5. Hu, S.; Wu, Y.; Wang, L.; Yao, H.; Li, T.: Simultaneous removal of nitrate and aniline from groundwater by cooperating heterotrophic denitrification with anaerobic ammonium oxidation. Desalin. Water Treat. 52(40–42), 7937–7950 (2013). https://doi.org/10.1080/19443994.2013.831788

    Article  Google Scholar 

  6. Chang, Y.P.; Ren, C.L.; Qu, J.C.; Chen, X.G.: Preparation and characterization of Fe\(_3\)O\(_4\)/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Appl. Surf. Sci. 261, 504–509 (2012). https://doi.org/10.1016/j.apsusc.2012.08.045

    Article  Google Scholar 

  7. Jadhav, S.R.; Verma, N.; Sharma, A.; Bhattacharya, P.K.: Flux and retention analysis during micellar enhanced ultrafiltration for the removal of phenol and aniline. Sep. Purif. Technol. 24(3), 541–557 (2001)

    Article  Google Scholar 

  8. Zhao, G.; Lu, X.; Zhou, Y.: Aniline degradation in aqueous solution by UV-aeration and UV-microO3 processes: efficiency, contribution of radicals and by-products. Chem. Eng. J. 229, 436–443 (2013)

    Article  Google Scholar 

  9. Ferreira, M.; Pinto, M.F.; Neves, L.C.; Fonseca, A.M.; Soares, O.S.G.P.; Orfao, J.J.M.; Pereira, M.F.R.; Figueiredo, J.L.; Parpot, P.: Electrochemical oxidation of aniline at mono and bimetallic electrocatalysts supported on carbon nanotubes. Chem. Eng. J. 260, 309–315 (2015). https://doi.org/10.1016/j.cej.2014.08.005

    Article  Google Scholar 

  10. Pham, T.D.; Shrestha, R.A.; Virkutyte, J.; Sillanpaa, M.: Recent studies in environmental applications of ultrasound. Can. J. Civ. Eng. 36(11), 1849–1858 (2009). https://doi.org/10.1139/L09-068

    Article  Google Scholar 

  11. Zhang, S.; Li, A.; Cui, D.; Yang, J.; Ma, F.: Performance of enhanced biological SBR process for aniline treatment by a mycelial pellet as biomass carrier. Bioresou. Technol. 102, 4360–4365 (2011)

    Article  Google Scholar 

  12. Visa, M.; Popa, N.: Adsorption of heavy metals cations onto zeolite material from aqueous solution. J. Memb. Sci. Technol. 5(01), 133 (2015). https://doi.org/10.4172/2155-9589.1000133

    Article  Google Scholar 

  13. Ali, I.; Gupta, V.K.: Advances in water treatment by adsorption technology. Nat. Prot. 1(6), 2661–2667 (2006). https://doi.org/10.1038/nprot.2006.370

    Article  Google Scholar 

  14. Largitte, L.; Pasquier, R.: A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 109, 495–504 (2016). https://doi.org/10.1016/j.cherd.2016.02.006

    Article  Google Scholar 

  15. EMIS: Adsorption Techniques. https://emis.vito.be/en/techniekfiche/adsorption-techniques. Accessed 10 Feb 2018

  16. Li, K.; Wang, X.: Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: equilibrium, kinetics and thermodynamics. Bioresour. Technol. 100(11), 2810–2815 (2009). https://doi.org/10.1016/j.biortech.2008.12.032

    Article  Google Scholar 

  17. Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F.; Rivera-Utrilla, J.; Sanchez-Polo, M.: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85(4), 833–846 (2007). https://doi.org/10.1016/j.jenvman.2007.07.031

    Article  Google Scholar 

  18. Xiao, G.Q.; Long, L.P.: Efficient removal of aniline by a water-compatible microporous and mesoporous hyper-cross-linked resin and XAD-4 resin: a comparative study. Appl. Surf. Sci. 258(17), 6465–6471 (2012). https://doi.org/10.1016/j.apsusc.2012.03.062

    Article  Google Scholar 

  19. Hu, R.; Wang, X.; Dai, S.; Shao, D.; Hayat, T.; Alsaedi, A.: Application of graphitic carbon nitride for the removal of Pb(II) and aniline from aqueous solutions. Chem. Eng. J. 260, 469–477 (2015). https://doi.org/10.1016/j.cej.2014.09.013

    Article  Google Scholar 

  20. Franus, W.; Wdowin, M.; Franus, M.: Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 186(9), 5721–5729 (2014). https://doi.org/10.1007/s10661-014-3815-5

    Article  Google Scholar 

  21. Jha, B.; Singh, D.N.: Flyash zeolites: Innovations, applications, and directions. Adv. Struct. Mater. 78, 5–31 (2016). https://doi.org/10.1007/978-981-10-1404-8

    Article  Google Scholar 

  22. Wang, S.B.; Peng, Y.L.: Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156(1), 11–24 (2010). https://doi.org/10.1016/j.cej.2009.10.029

    Article  Google Scholar 

  23. Huang, T.Y.; Chuieh, P.T.: Life cycle assessment of reusing fly ash from municipal solid waste incineration. Procedia Eng. 118, 984–991 (2015)

    Article  Google Scholar 

  24. Martison, E.: EPA coal ash rule still not done (2014). https://www.politico.com/story/2014/03/epa-coal-ash-rule-104967. Accessed 26 Jan 2018

  25. Raleigh, N.C.: Duke Energy Corporation agrees to \$6 million fine for coal ash spill, North Carolina says (2016). https://www.cbsnews.com/news/duke-energy-corporation-agrees-6-million-fine-coal-ash-spill-north-carolina. Accessed 26 Jan 2018

  26. Rauf, N.; Damayanti, M.C.; Pratama, S.W.I.: The influence of sugarcane bagasse ash as fly ash on cement quality. In: AIP (2017)

  27. James, J.; Pandian, P.K.: A short review on the valorisation of sugarcane bagasse fly ash in the manufacture of stabilized/sintered earth blocks and tiles. Adv. Mater. Sci. Eng. 2017, 1–15 (2017). https://doi.org/10.1155/2017/1706893

    Article  Google Scholar 

  28. Querol, X.; Moreno, N.; Umana, J.C.; Alastuey, A.; Hernandez, E.; Lopez-Soler, A.; Plana, F.: Synthesis of zeolites from coal fly ash: an overview. Int. J. Coal Geol. 50(1–4), 413–423 (2002). https://doi.org/10.1016/S0166-5162(02)00124-6

    Article  Google Scholar 

  29. Lokeshappa, B.; AnikKumar, D.: Disposal and management of fly ash. Paper Presented at the International Conference on Life Science and Technology.

  30. Teixeira, S.R.; Pena, A.F.V.; Miguel, A.G.: Briquetting of charcoal from sugar-cane bagasse fly ash (SBFA) as an alternative fuel. Waste Manag. 30, 804–807 (2010)

    Article  Google Scholar 

  31. Font, O.; Moreno, N.; Diez, S.; Querol, X.; Lopez-Soler, A.; Coca, P.; Pena, F.G.: Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction. J. Hazard Mater. 166(1), 94–102 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.120

    Article  Google Scholar 

  32. Deng, H.; Ge, Y.: Formation of NaP zeolite from fused fly ash for the removal of Cu(II) by an improved hydrothermal method. RSC Adv. 5(12), 9180–9188 (2015). https://doi.org/10.1039/c4ra15196h

    Article  Google Scholar 

  33. Kazemian, H.; Naghdali, Z.; Kashani, T.G.; Farhadi, F.: Conversion of high silicon fly ash to Na-P1 zeolite: alkaline fusion followed by hydrothermal crystallization. Adv. Powder Technol. 21(3), 279–283 (2010). https://doi.org/10.1016/j.apt.2009.12.005

    Article  Google Scholar 

  34. Molina, A.; Poole, C.: A comparative study using two methods to produce zeolites from fly ash. Miner. Eng. 17(2), 167–173 (2004). https://doi.org/10.1016/j.mineng.2003.10.025

    Article  Google Scholar 

  35. Musyoka, N.M.; Petrik, L.F.; Hums, E.; Kuhnt, A.; Schwieger, W.: Thermal stability studies of zeolites A and X synthesized from South African coal fly ash. Res. Chem. Intermed. 41(2), 575–582 (2013). https://doi.org/10.1007/s11164-013-1211-3

    Article  Google Scholar 

  36. Shigemoto, N.; Hayashi, H.; Miyaura, K.: Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. J. Mater. Sci. 28(17), 4781–4786 (1993). https://doi.org/10.1007/Bf00414272

    Article  Google Scholar 

  37. Deepesh, B.; Radha, T.; Purnima, K.S.; Yogesh, G.; Pankaj, S.: Hydrothermal synthesis and characterization of zeolite: effect of crystallization temperature. Res. J. Chem. Sci. 3(9), 1–4 (2013)

    Google Scholar 

  38. Fiol, N.; Villaescusa, I.: Determination of sorbent point of zero charge: usefulness in sorption studies. Environ. Chem. Lett. 7(1), 79–84 (2009). https://doi.org/10.1007/s10311-008-0139-0

    Article  Google Scholar 

  39. Cardenas-Pena, A.M.; Ibanez, J.G.; Vasquez-Medrano, R.: Determination of the point of zero charge for electrocoagulation precipitates from an iron anode. Int. J. Electrochem. Sci. 7(7), 6142–6153 (2012)

    Google Scholar 

  40. Mahmood, T.; Saddique, M.T.; Naeem, A.; Westerhoff, P.; Mustafa, S.; Alum, A.: Comparison of different methods for the point of zero charge determination of NiO. Ind. Eng. Chem. Res. 50(17), 10017–10023 (2011). https://doi.org/10.1021/ie200271d

    Article  Google Scholar 

  41. Tran, H.N.; Wang, Y.; You, S.; Chao, H.: Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of pie-pie interactions. Process Saf. Environ. Prot. 107, 168–180 (2017)

    Article  Google Scholar 

  42. Dias, N.C.; Steiner, P.A.; Braga, M.C.B.: Characterization and modification of a clay mineral used in adsorption tests. J. Miner. Mater. Charact. Eng. 3, 277–288 (2015)

    Google Scholar 

  43. Amodu, O.S.; Ojumu, T.V.; Ntwampe, S.K.; Ayanda, O.S.: Rapid adsorption of crystal violet onto magnetic zeolite synthesized from fly ash and magnetite nanoparticles. J. Encapsul. Adsorpt. Sci. 5, 191–203 (2015)

    Article  Google Scholar 

  44. NPTEL: Surface Chemistry and Adsorption. http://nptel.ac.in/courses/122101001/downloads/lec-36.pdf? Accessed 8 Feb 2018

  45. Ayawei, N.; Ebelegi, A.N.; Wankasi, D.: Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 1–11 (2017). https://doi.org/10.1155/2017/3039817

    Article  Google Scholar 

  46. Abdollahi, S.B.: A new approach for analysis of adsorption from liquid phase: a critical review. J. Pollut. Eff. Control 3(2), 139 (2015). https://doi.org/10.4172/2375-4397.1000139

    Article  Google Scholar 

  47. Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M.: Sorption isotherms: a review on physical bases, modeling and measurement. Appl. Geochem. 22(2), 249–275 (2007). https://doi.org/10.1016/j.apgeochem.2006.09.010

    Article  Google Scholar 

  48. UW: Adsorption Equilibria Principles. http://mimoza.marmara.edu.tr/~zehra.can/ENVE401/3.%20Adsorption%20Equilibria.pdf. Accessed 2 Feb 2018

  49. Lagergren, S.: About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapasakademiens. Handlingar Band 24(4), 1–39 (1898)

    Google Scholar 

  50. Ho, Y.S.; McKay, G.: Adsorption of dye from aqueous solution by peat. Chem. Eng. J. 70(2), 115–124 (1998)

    Article  Google Scholar 

  51. Liu, Y.: New insights into pseudo-second-order kinetic equation for adsorption. Colloid Surf. A 320(1–3), 275–278 (2008). https://doi.org/10.1016/j.colsurfa.2008.01.032

    Article  Google Scholar 

  52. Wu, F.-C.; Tseng, R.-L.; Juang, R.-S.: Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153, 1–8 (2009). https://doi.org/10.1016/j.cej.2009.04.042

    Article  Google Scholar 

  53. Weber Jr., W.J.; Morris, J.C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31–60 (1963)

    Google Scholar 

  54. Sarkar, M.; Acharya, P.K.; Bhattacharya, B.: Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. J. Colloid Interface Sci. 266, 28–32 (2003). https://doi.org/10.1016/S0021-9797(03)00551-4

    Article  Google Scholar 

  55. Musyoka, N.M.; Petrik, L.F.; Fatoba, O.O.; Hums, E.: Synthesis of zeolites from coal fly ash using mine waters. Miner. Eng. 53, 9–15 (2013). https://doi.org/10.1016/j.mineng.2013.06.019

    Article  Google Scholar 

  56. Fungaro, D.A.; Bruno, M.; Grosche, L.C.: Adsorption and kinetic studies of methylene blue on zeolite synthesized from fly ash. Desalin. Water Treat. 2(1–3), 231–239 (2009). https://doi.org/10.5004/Dwt.2009.305

    Article  Google Scholar 

  57. Scott, M.A.; Kathleen, A.C.; Prabir, K.D.: Handbook of Zeolite Science and Technology. Marcel Dekker Inc, New York (2003)

    Google Scholar 

  58. Tantawy, M.A.; El-Roudi, A.M.; Salem, A.A.: Utilization of bagasse ash as supplementary cementitious material. Int. J. Eng. Res. Technol. (IJERT) 3(7) (2014)

  59. Mainganye, D.; Ojumu, T.V.; Petrik, L.: Synthesis of zeolites Na-P1 from South African coal fly ash: effect of impeller design and agitation. Materials 6(5), 2074–2089 (2013). https://doi.org/10.3390/ma6052074

    Article  Google Scholar 

  60. Tanaka, H.; Furusawa, S.; Hino, R.: Synthesis, characterization, and formation process of Na-X zeolite from coal fly ash. J. Mater. Synth. Process. 10(3), 143–148 (2002). https://doi.org/10.1023/A:1021938729996

    Article  Google Scholar 

  61. Wu, D.Y.; Lu, Y.K.; Kong, H.N.; Ye, C.; Jin, X.C.: Synthesis of zeolite from thermally treated sediment. Ind. Eng. Chem. Res. 47(2), 295–302 (2008). https://doi.org/10.1021/ie071063u

    Article  Google Scholar 

  62. Franus, W.; Wdowin, M.; Franus, M.: Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 186, 5721–5729 (2014). https://doi.org/10.1007/s10661-014-3815-5

    Article  Google Scholar 

  63. Koukouzas, N.; Vasilatos, C.; Itskos, G.S.; Moutsatsou, A.: Characterization of CFB-coal fly ash zeolitic materials and their potential use in wastewater treatment. Paper Presented at the World of Coal Ash (WOCA), Lexington, KY, USA

  64. Clayden, J.; Greeves, N.; Warren, S.: Organic Chemistry Textbook, 2nd ed. (2012)

  65. Sepulveda, L.A.; Santana, C.C.: Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat. Environ. Technol. 34(8), 967–977 (2013). https://doi.org/10.1080/09593330.2012.724251

    Article  Google Scholar 

  66. Hashim, M.A.; Chu, K.-H.; Tsan, P.-S.: Effects of ionic strength and ph on the adsorption equilibria of lysozyme on ion exchangers. J. Chem. Tech. Biotechnol. 62, 253–260 (1995)

    Article  Google Scholar 

  67. Padmavathy, K.S.; Madhu, G.; Haseena, P.V.: A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticle. Procedia Technol. 24, 585–594 (2016). https://doi.org/10.1016/j.protcy.2016.05.127

    Article  Google Scholar 

  68. Osu, C.I.; Odoemelam, S.A.: Studies on adsorbent dosage, particle sizes and pH constraints on biosorption of Pb(II) and Cd(II) ions from aqueous solution using modified and unmodified Crassostrea gasar (Bivalve) Biomass. IAAST 1, 62–68 (2010)

    Google Scholar 

  69. Ozer, A.; Akkaya, G.; Turabik, M.: The biosorption of Acid Red 337 and Acid Blue 324 on Enteromorpha prolifera: the application of nonlinear regression analysis to dye biosorption. Chem. Eng. J. 112(1–3), 181–190 (2005). https://doi.org/10.1016/j.cej.2005.07.007

    Article  Google Scholar 

  70. Vadivelan, V.; Kumar, K.V.: Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 286, 90–100 (2005). https://doi.org/10.1016/j.jcis.2005.01.007

    Article  Google Scholar 

  71. Lorenc-Grabowska, E.; Gryglewicz, G.: Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes and Pigments 74, 34–40 (2007). https://doi.org/10.1016/j.dyepig.2006.01.027

    Article  Google Scholar 

  72. Zhou, Y.; Gu, X.; Zhang, R.; Lu, J.: Removal of aniline from aqueous solution using pine sawdust modified with citric acid and \(\beta \)-cyclodextrin. Ind. Eng. Chem. Res. 53(2), 887–894 (2014). https://doi.org/10.1021/ie403829s

    Article  Google Scholar 

  73. Wei, L.X.Y.; Qingxin, G.: Effect of template in MCM-41 on the sorption of aniline from aqueous solution. J. Environ. Manag. 92, 2939–2943 (2011)

    Article  Google Scholar 

  74. Huang, R.H.; Yang, B.C.; Liu, Q.; Liu, Y.P.: Simultaneous adsorption of aniline and Cr(VI) ion by activated carbon/chitosan composite. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.39903

  75. Hong, Z.; Donghong, L.; Yan, Z.; Shuping, L.; Zhe, L.: Sorption isotherm and kinetic modelling of aniline on Cr-bentonite. J. Hazard. Mater. 167, 141–147 (2009)

    Article  Google Scholar 

  76. Ersoy, B.; Celik, M.S.: Uptake of aniline and nitrobenzene from aqueous solution by organo-zeolite. Environ. Technol. 25(3), 341–348 (2004). https://doi.org/10.1080/09593330409355467

    Article  Google Scholar 

  77. Shah, B.A.; Abebe, A.A.; Shah, A.V.: Microwave-synthesized barium-impregnated siliceous zeolitic material derived from bagasse fly ash for uptake of aniline. Arab. J. Sci. Eng. 42(1), 139–152 (2017). https://doi.org/10.1007/s13369-016-2083-9

    Article  Google Scholar 

  78. Fuqiang, A.; Xiaoqin, F.; Baojiao, G.: Adsorption of aniline from aqueous solution using novel adsorbent PAM/SiO\(_2\). Chem. Eng. J. 151, 183–187 (2009)

    Article  Google Scholar 

  79. Babak, K.; Ahmad, J.J.; Roshanak, R.K.; Simin, N.; Ahmad, A.; Ali, E.: Synthesis and properties of Fe\(_3\)O\(_4\)-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iran. J. Environ. Health Sci. Eng 10, 1–9 (2013)

    Article  Google Scholar 

  80. Yu, S.; Wang, X.; Chen, Z.; Wang, J.; Wang, S.; Hayat, T.; Wang, X.: Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. J. Hazard. Mater. 321, 111–120 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavna A. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, B.A., Oluyinka, O.A. & Shah, A.V. Fly Ash Reuse as Mesoporous Ca- and Mg-Zeolitic Composites for the Seclusion of Aniline from Aqueous Solution. Arab J Sci Eng 44, 289–304 (2019). https://doi.org/10.1007/s13369-018-3596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3596-1

Keywords

Navigation