Skip to main content
Log in

Operational and Spectral Characteristics of a Sr–Ne Glow Discharge Plasma

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

We have used emission spectroscopy to determine the plasma parameters of strontium in a glow discharge lamp. The excitation temperature is determined from the Boltzmann’s plot method, and the electron density is measured from the Stark broadening of the observed spectral lines. Sr I line at 640.846 nm corresponding to \(4d5p~ ^{3}{\mathbf{F}^{0}}_{4}\rightarrow 5{s}4{d}~ ^{3}{} \mathbf{D}_{3}\) transition has been used for the determination of electron number density. Further, the electron number densities in the plasma are determined at different discharge currents. Spectral emission intensities of some selected lines display Frank–Hertz-type dips at two different discharge currents. The possible role of near-resonant collisions between long-lived metastable levels of Ne and Sr atoms in creating ionization of Sr II is highlighted. The competing collisional ionization and radiative decay of the levels such as \({4p}^{6}{7p}\) in Sr II and doubly excited 4d5p levels of Sr I is considered significant in this case. Our observations show that the electron number density changes linearly with the electric field for low-discharge currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griem, H. R.: Principles of plasma spectroscopy. In: Proceedings of the Physical Society, vol. 1 (2005)

  2. Griem, H.R.; Barr, W.L.: Spectral line broadening by plasmas. IEEE Trans. Plasma Sci. 3, 227–227 (1975)

    Article  Google Scholar 

  3. Heald, M.A.; Wharton, C.B.: Plasma Diagnostics with Microwaves. Wiley, New York (1965)

    Book  Google Scholar 

  4. Mochizuki, T.; Hirata, K.; Ninomiya, H.; Nakamura, K.; Maeda, K.; Horiguchi, S.; Fujiwara, Y.: Time-resolved electron density measurements in an ArF excimer laser discharge. Opt. Commun. 72, 302–305 (1989)

    Article  Google Scholar 

  5. Van de Sanden, M.; Janssen, G.; De Regt, J.; Schram, D.; Van der Mullen, J.; Van der Sijde, B.: A combined Thomson–Rayleigh scattering diagnostic using an intensified photodiode array. Rev. Sci. Instrum. 63, 3369–3377 (1992)

    Article  Google Scholar 

  6. Cameron, S.; Tracy, M.; Camacho, J.: Electron density and temperature contour plots from a laser-produced plasma using collective ultraviolet Thomson scattering. IEEE Trans. Plasma Sci. 24, 45–46 (1996)

    Article  Google Scholar 

  7. Hafeez, S.; Shaikh, N.M.; Rashid, B.; Baig, M.: Plasma properties of laser-ablated strontium target. J. Appl. Phys. 103, 83117–83117 (2008)

    Article  Google Scholar 

  8. Lakicevic, I.: Estimated Stark widths and shifts of neutral atom and singly charged ion resonance lines. Astron. Astrophys. 127, 37–41 (1983)

    Google Scholar 

  9. Purić, J.; Ćuk, M.; Lakićević, I.: Regularities and systematic trends in the Stark broadening and shift parameters of spectral lines in plasma. Phys. Rev. A 32, 1106 (1985)

    Article  Google Scholar 

  10. Purić, J.; Ćuk, M.; Rathore, B.: Stark widths and shifts of neutral neon spectral lines. Phys. Rev. A 35, 1132 (1987)

    Article  Google Scholar 

  11. Mahmood, S.; Shaikh, N.M.; Kalyar, M.; Rafiq, M.; Piracha, N.; Baig, M.: Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma. J. Quant. Spectrosc. Radiat. Transf. 110, 1840–1850 (2009)

    Article  Google Scholar 

  12. Takai, M.; Nishimoto, T.; Kondo, M.; Matsuda, A.: Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma. Appl. Phys. Lett. 77, 2828–2830 (2000)

    Article  Google Scholar 

  13. Noguchi, Y.; Matsuoka, A.; Bowden, M.D.; Uchino, K.; Muraoka, K.: Measurements of electron temperature and density of a micro-discharge plasma using laser Thomson scattering. Jpn. J. Appl. Phys. 40, 326 (2001)

    Article  Google Scholar 

  14. DenHartog, E.; O’Brian, T.; Lawler, J.: Electron temperature and density diagnostics in a helium glow discharge. Phys. Rev. Lett. 62, 1500 (1989)

    Article  Google Scholar 

  15. Van Dyck Jr., R.S.; Johnson, C.E.; Shugart, H.A.: Lifetime lower limits for the P\(^0_3\) and P\(^2_3\) metastable states of neon, argon, and krypton. Phys. Rev. A 5, 991 (1972)

    Article  Google Scholar 

  16. Zinner, M.; Spoden, P.; Kraemer, T.; Birkl, G.; Ertmer, W.: Precision measurement of the metastable \( ^{3}\)P\(_2\) lifetime of neon. Phys. Rev. A 67, 010501 (2003)

    Article  Google Scholar 

  17. Khan, M.A.; Al-Jalal, A.M.: Dissociation of O\(_2\) in low pressure glow discharges in He-O\(_2\), Ne-O\(_2\), and Ar-O\(_2\) gas mixtures. J. Appl. Phys. 104, 123302 (2008)

    Article  Google Scholar 

  18. Lee, Y.-I.; Sawan, S.P.; Thiem, T.L.; Teng, Y.-Y.; Sneddon, J.: Interaction of a laser beam with metals. Part II: space-resolved studies of laser-ablated plasma emission. Appl. Spectrosc. 46, 436–441 (1992)

    Article  Google Scholar 

  19. Sabsabi, M.; Cielo, P.: Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization. Appl. Spectrosc. 49, 499–507 (1995)

    Article  Google Scholar 

  20. Dimitrijević, M.S.; Sahal-Bréchot, S.: Stark broadening of neutral zinc spectral lines. Astron. Astrophys. Suppl. Ser. 140, 193–196 (1999)

    Article  Google Scholar 

  21. Qindeel, R.; Dimitrijević, M.; Shaikh, N.; Bidin, N.; Daud, Y.: Spectroscopic estimation of electron temperature and density of zinc plasma open air induced by Nd:YAG laser. Eur. Phys. J. Appl. Phys. 50, 30701 (2010)

    Article  Google Scholar 

  22. Rehan, I.; Rehan, K.; Sultana, S.; ul Haq, M.O.; Niazi, M.Z.K.; Muhammad, R.: Spatial characterization of red and white skin potatoes using nano-second laser induced breakdown in air. Eur. Phys. J. Appl. Phys. 73, 10701 (2016)

    Article  Google Scholar 

  23. Rehan, I.; Gondal, M.A.; Rehan, K.: Determination of lead content in drilling fueled soil using laser induced spectral analysis and its cross validation using ICP/OES method. Talanta 182, 443–449 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rehan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehan, I., Khan, M.A., Muhammad, R. et al. Operational and Spectral Characteristics of a Sr–Ne Glow Discharge Plasma. Arab J Sci Eng 44, 561–568 (2019). https://doi.org/10.1007/s13369-018-3439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3439-0

Keywords

Navigation