Skip to main content
Log in

A Numerical Study to Investigate the Effect of Inlet Reynolds Number on the Thermal–Fluid Phenomena in the Supercritical Carbon Dioxide-Cooled Pebble Bed Reactor

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a numerical investigation into thermal–fluid phenomena in a supercritical carbon dioxide-cooled pebble bed reactor (SCPBR) core under steady state using computational fluid dynamic. In this study, a three-dimensional model with the capability to simulate the fluid flow and heat transfer in the SCPBR core has been developed. The developed model was implemented on a personal computer using ANSYS Fluent 14.5. Several important fluid flow and heat transfer parameters have been examined, including the pressure drop over the reactor core, the heat transfer coefficient, the temperature distribution, the coolant density and the coolant velocity. Results obtained from the simulation show that with increasing the inlet Reynolds number, the pressure drop, the coolant density and the heat transfer coefficient increase. However, the coolant temperature and the temperature difference between pebble and coolant decrease with increasing the inlet Reynolds number. The conclusion of the analysis is that supercritical carbon dioxide (S-CO\(_{2})\), compared to other coolants such as helium, could be a suitable coolant for use in a pebble bed reactor due to its large mass density and heat transfer characteristics, which could lead to obtain a higher temperature rise and a lower pressure gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(a_\mathrm{sf}\) :

Surface area per unit volume (1/m)

\(C_{p}\) :

Specific heat capacity [J/(kg K)]

d :

Diameter of the fuel sphere (pebble) (m)

\(d_\mathrm{peb}\) :

Diameter of pebble (m)

e :

Emissivity of pebble

\(G_\mathrm{K}\) :

Generation of turbulence kinetic energy [\(\hbox {kg}/ (\hbox {m}\,\hbox {s}^{3})\)]

\(h_\mathrm{sf}\) :

Fluid–solid heat transfer coefficient (\(\hbox {W}/(\hbox {m}^{2}\) \(\hbox {K})\))

k :

Turbulence kinetic energy (\(\hbox {m}^{2}/\hbox {s}^{2}\))

p :

Pebble bed packing fraction

P :

Pressure (Pa)

\(Q_{\mathrm{th}}\) :

Thermal power

Q :

Flow rate

Re :

Reynolds number

Pr :

Prandtl number

\(S_\mathrm{h}\) :

Heat source (\(\hbox {W/m}^{3}\))

T :

Pebble temperature (K)

\(\Delta T\) :

Inlet–outlet temperature difference (K)

u :

Superficial mean exit velocity (m/s)

v :

Velocity (m/s)

\(\varepsilon \) :

Bed porosity

\(\varepsilon _{\mathrm{e}}\) :

Energy dissipation rate (\(\hbox {m}^{2}/\hbox {s}^{3}\))

\(\varepsilon _{b}\) :

Volumetric porosity

\(\mu \) :

Dynamic viscosity [kg/(m s)]

\(\mu _{\mathrm{t}}\) :

Turbulent viscosity [kg/ (m s)]

\(\rho \) :

Fluid density (\(\hbox {kg/m}^{3}\))

\(\rho _{\mathrm{fuel} }\) :

Power density of each fuel sphere (\(\hbox {W/m}^{3}\))

\(\sigma \) :

Stefan–Boltzmann constant   \(=\) 5.670 \(\times \)\(10^{-8} [\hbox {W}/ (\hbox {m}^{2}\, \hbox {K}^{4})\)]

\(\lambda _\mathrm{f}\) :

Fluid thermal conductivity [W/(m K)]

\(\lambda _\mathrm{peb}\) :

Thermal conductivity of pebble [W/(m K)]

\(\lambda _\mathrm{s}\) :

Solid thermal conductivity [W/(m K)]

References

  1. Lohnert, G.: Technical design features and essential safety-related properties of the HTR-module. Nucl. Eng. Des. 121, 259–275 (1990)

    Article  Google Scholar 

  2. Guo, W.; Ying, A.; Ni, M.J.; Abdou, M.A.: Influence of 2D and 3D convection–diffusion flow on tritium permeation in helium cooled solid breeder blanket units. Fusion Eng. Des. 81, 1465–1470 (2006)

    Article  Google Scholar 

  3. Van Rooyen, W.J.; Krueger, D.L.W.; Mathews, E.H.; Kleingeld, M.: Simulation and optimissation of gas storage tanks filled with heat sink. Nucl. Eng. Des. 236, 156–163 (2006)

    Article  Google Scholar 

  4. Van Der Merwe, J.; Van Ravenswaay, J.P.: Flownex Version 6.4 User Manual. MTech Industrial, Potchefstroom (2003)

    Google Scholar 

  5. Becker, S.; Laurien, E.: Three-dimensional numerical simulation of flow and heat transport in high-temperature nuclear reactors. Nucl. Eng. Des. 222, 189–201 (2003)

    Article  MATH  Google Scholar 

  6. Atmaca, M.; Girgin, I.; Ezgi, C.: CFD modeling of a diesel evaporator used in fuel cell systems. Int. J. Hydrog. Energy 41(14), 6004–6012 (2016)

    Article  Google Scholar 

  7. Latifi, M.S.; Setayeshi, S.; Starace, G.; Fiorentino, M.: A numerical investigation on the influence of porosity on the steady state and transient thermal–hydraulic behaviour of the PBMR. ASME J. Heat Trans. 138(10), 102003-1–102003-9 (2016)

    Article  Google Scholar 

  8. Latifi, M.S.; Setayeshi, S.: Numerical simulation of thermal fluid dynamics in the PBMR core. Spec. Top. Rev. Porous Media 7(1), 67–76 (2016)

    Article  Google Scholar 

  9. Oukil, Kh; Sidi-Ali, K.; Alem, A.; Hassani, T.; Amri, Y.: Porous media applied to pebble bed modular reactor thermal–hydraulics. J. Sci. Res. 6, 19–23 (2013)

    Google Scholar 

  10. Van Rooijen, W.F.G.: Improving fuel cycle design and safety characteristics of a gas cooled fast reactor. IOS Press, Amsterdam (2006)

    Google Scholar 

  11. Yu, D.; Peng, M.; Wang, Z.: CFD study on the supercritical carbon dioxide cooled pebble bed reactor. Nucl. Eng. Des. 281, 88–95 (2015)

    Article  Google Scholar 

  12. Reitsma, F.; Strydom, G.; de Haas, J.B.M.; Ivanov, K.; Tyobeka, B.; Mphahlele, R.; Downar, T.J.; Seker, V.; Gougar, H.D.; Da Cruz, D.F.; Sikik, U.E.: The PBMR steady-state and coupled kinetics core thermal–hydraulics benchmark test problems. Nucl. Eng. Des. 236, 657–668 (2006)

    Article  Google Scholar 

  13. Chang Oh.; Kim, E.; Schultz, R.; Patterson, M.; Petti, D.: Thermal hydraulics of the very high temperature gas cooled reactor. In: The 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13) Kanazawa, Japan. September 27–October 2, 2009

  14. Ergun, S.: Fluid flow through packed columns. Chem. Process Eng. 48(2), 89–94 (1952)

    Google Scholar 

  15. Macdonald, I.F.; et al.: Flow through porous media-the Ergun equation revisited. Ind. Eng. Chem. Fundam. 18(3), 199–208 (1979)

    Article  Google Scholar 

  16. Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer, New York (1995)

    Book  MATH  Google Scholar 

  17. Hsu, C.-T.: Heat conduction in porous media. In: Vafai, K. (ed.) Handbook of Porous Media. Marcel Dekker Inc, New York (2000)

    Google Scholar 

  18. Launder, B.E.; Spalding, D.B.: The numerical computational of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269 (1973)

    Article  MATH  Google Scholar 

  19. Celik, I.B.: Introductory Turbulence Modeling. West Virginia University Mechanical and Aerospace Engineering Department, Morgantown (1999)

    Google Scholar 

  20. Benenati, R.F.; Browsilow, C.B.: Void fraction distribution in beds of spheres. AIChE 8(3), 359–361 (1962)

    Article  Google Scholar 

  21. Vortmeyer, D.; Schuster, J.: Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method. Chem. Eng. Sci. 38, 1691–1699 (1983)

    Article  Google Scholar 

  22. Du Toit, C.G.: Radial variation in porosity in annular packed beds. Nucl. Eng. Des. 238, 3073–3079 (2008)

    Article  Google Scholar 

  23. http://webbook.nist.gov/cgi/fluid.cgi?ID=C124389&Action=PageHrBHrB (2016). Accessed 20 Sept 2016

  24. Pantankar, S.V.: Numerical Heat Transfer and Fluid Flow, 1st edn. Hemisphere Publishing, Washington, DC (1980)

    Google Scholar 

  25. Ferziger, Joel H.; Peric, Milovan: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  26. ANSYS Inc.: FLUENT R14.5 User’s Guide. ANSYS, Canonsburg (2012)

  27. Nuclear Safety Standards Commission (KTA): KTA 3102.2 reactor core design of high-temperature gas-cooled reactors. Part 2: Heat Spherical Fuel Elements, KTA Safety Standard Issue 6/86, Germany (1983)

  28. Heil, J, et al.: Zusammenstellung von Gleichung fuer den Druckverlust und den Warmeubergang fuer Stroemungen in Kugelschuttungen und prismatischen kanalen, IRE/I-20 ((1969). Heil, 1969)

  29. Anthony, G.D.: The length effect on packed bed effective heat transfer parameters. Chem. Eng. J. 31(3), 163–173 (1985)

    Article  Google Scholar 

  30. Anthony, G.D.; van Dongeren, J.H.: The influence of the tube and particle diameters at constant ratio on heat transfer in packed beds. Chem. Eng. Process. Process Intensif. 37(1), 23–32 (1998)

    Article  Google Scholar 

  31. Demirel, Y.; Sharma, R.N.; Al-Ali, H.H.: On the effective heat transfer parameters in a packed bed. Int. J. Heat Mass Transf. 43(2), 327–332 (2000)

    Article  Google Scholar 

  32. Nijemeisland, M.; Anthony, G.D.: Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed. Chem. Eng. J. 82(1), 231–246 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Sadat Latifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifi, M.S., du Toit, C.G. A Numerical Study to Investigate the Effect of Inlet Reynolds Number on the Thermal–Fluid Phenomena in the Supercritical Carbon Dioxide-Cooled Pebble Bed Reactor. Arab J Sci Eng 44, 981–991 (2019). https://doi.org/10.1007/s13369-018-3352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3352-6

Keywords

Navigation