Skip to main content
Log in

Evaluation of the Forward Osmosis Performance of Cellulose Acetate Nanocomposite Membranes

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The polydopamine-modified halloysite nanotubes (DHNT) were synthesized for the improved dispersion in CA membrane matrix to obtain a CA-DHNT mixed matrix forward osmosis (FO) membranes. The FO membranes were characterized by Raman spectroscopy, porosity measurement, and contact angle study. The altered viscosities of the dope solutions with different concentrations of DHNT were measured and its effect on resultant FO membrane morphological features was studied. The CA-DHNT hybrid membranes produced high water permeation and low salt permeability owing to their high hydrophilicity, dense top layers, and due to the formation of a more sponge-like structures in their cross sections. The loading of 0.5 wt% of DHNTs was optimized composition for the loading and the same membrane witnessed a maximum of \(16\,\,\hbox {L}/\hbox {m}^{2}\hbox {h}\) FO water flux and performed better than commercial HTI FO membrane. This study demonstrated the competent nature of DHNTs toward the fabrication of potential FO membranes with least salt permeability and high water permeation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M.: Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)

    Article  Google Scholar 

  2. Chung, T.S.; Zhang, S.; Wang, K.Y.; Su, J.C.; Ling, M.M.: Forward osmosis processes: yesterday, today and tomorrow. Desalination 287, 78–81 (2012)

    Article  Google Scholar 

  3. Huang, X.; Solasi, R.; Zou, Y.; Feshler, M.; Reifsnider, K.; Condit, D.; Burlatsky, S.; Madden, T.: Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability. J. Polym. Sci. Part B Polym. Phys. 44, 2346–2357 (2006)

    Article  Google Scholar 

  4. Venketeswari, P.; Leong, O.S.; Yong, N.H.: Seawater desalination using forward osmosis process. J. Water Reuse Desalin. 4, 34–40 (2014)

    Article  Google Scholar 

  5. Ng, H.Y.; Tang, W.; Wong, W.S.: Performance of forward (direct) osmosis process: membrane structure and transport phenomenon. Environ. Sci. Technol. 40, 2408–2413 (2006)

    Article  Google Scholar 

  6. Wei, J.; Qiu, C.; Tang, C.Y.; Wang, R.; Fane, A.G.: Synthesis and characterization of flatsheet thin film composite forward osmosis membranes. J. Membr. Sci. 372, 292–302 (2011)

    Article  Google Scholar 

  7. Zhang, S.; Wang, K.Y.; Chung, T.-S.; Chen, H.; Jean, Y.C.; Amy, G.: Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer. J. Membr. Sci. 360, 522–535 (2010)

    Article  Google Scholar 

  8. Geise, G.M.; Lee, H.S.; Miller, D.J.; Freeman, B.D.; McGrath, J.E.; Paul, D.R.: Water purification by membranes: the role of polymer science. J. Polym. Sci. Part B Polym. Phys. 48, 1685–1718 (2010)

    Article  Google Scholar 

  9. Su, J.; Yang, Q.; Teo, J.F.; Chung, T.S.: Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J. Membr. Sci. 355, 36–44 (2010)

    Article  Google Scholar 

  10. Wang, K.Y.; Ong, R.C.; Chung, T.S.: Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer. Ind. Eng. Chem. Res. 49, 4824–4831 (2010)

    Article  Google Scholar 

  11. Zhang, S.; Wang, K.Y.; Chung, T.S.; Jean, Y.C.; Chen, H.: Molecular design of the cellulose ester-based forward osmosis membranes for desalination. Chem. Eng. Sci. 66, 2008–2018 (2011)

    Article  Google Scholar 

  12. Su, J.; Chung, T.-S.; Helmer, B.J.; de Wit, J.S.: Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using sucrose as draw solute. J. Membr. Sci. 396, 92–100 (2012)

    Article  Google Scholar 

  13. Sairam, M.; Sereewatthanawut, E.; Li, K.; Bismarck, A.; Livingston, A.G.: Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis-desalination using \(\text{ MgSO }_{4}\) draw solution. Desalination 273, 299–307 (2011)

    Article  Google Scholar 

  14. Nguyen, T.P.N.; Yun, E.-T.; Kim, I.-C.; Kwon, Y.-N.: Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis. J. Membr. Sci. 433, 49–59 (2013)

    Article  Google Scholar 

  15. Li, G.; Wang, J.; Hou, D.; Bail, Y.; Liu, H.: Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis. J. Environ. Sci. 45, 7–17 (2016)

    Article  Google Scholar 

  16. Dabaghian, Z.; Rahimpour, A.; Jahanshahi, M.: Highly porous cellulosic nanocomposite membranes with enhanced performance for forward osmosis desalination. Desalination 381, 117–125 (2016)

    Article  Google Scholar 

  17. Choi, H.; Son, M.; Yoon, S.-H.; Celik, E.; Kang, S.; Park, H.; Park, C.-H.; Choi, H.: Alginate fouling reduction of functionalized carbon nanotube blended cellulose acetate membrane in forward osmosis. Chemosphere 136, 204–210 (2015)

    Article  Google Scholar 

  18. Jing, H.; Higaki, Y.; Ma, W.; Xi, J.; Jinnai, H.; Otsuka, H.; Takahara, A.: Preparation and characterization of polycarbonate nanocomposites based on surface-modified halloysite nanotubes. Polym. J. 46, 307–312 (2014)

    Article  Google Scholar 

  19. Hebbar, R.S.; Isloor, A.M.; Anand, K.; Ismail, A.F.: Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal. J. Mater. Chem. A 4, 764–774 (2016)

    Article  Google Scholar 

  20. Kumar, R.; Al-Haddad, S.; Al-Rughaib, M.; Salman, M.: Evaluation of hydrolyzed Poly (isobutylene-alt-maleic anhydride) as a polyelectrolyte draw solution for forward osmosis desalination. Desalination 394, 148–154 (2016)

    Article  Google Scholar 

  21. Liu, Y.; Mi, B.: Combined fouling of forward osmosis membranes: synergistic foulant interaction and direct observation of fouling layer formation. J. Membr. Sci. 407–408, 136–144 (2012)

    Article  Google Scholar 

  22. Gunasekaran, S.; Kumar, R.T.; Ponnusamy, S.: Vibrational spectra and normal coordinate analysis of adrenaline and dopamine. Indian J. Pure Appl. Phys. 45, 884–892 (2007)

    Google Scholar 

  23. Chao, C.; Liu, J.; Wang, J.; Zhang, Y.; Zhang, B.; Zhang, Y.; Xiang, X.; Chen, R.: Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl. Mater. Interfaces 5, 10559–10564 (2013)

    Article  Google Scholar 

  24. Sanchez-Marquez, J.A.; Fuentes-Ramirez, R.; Cano-Rodriguez, I.; Gamino-Arroyo, Z.; Rubio-Rosas, E.; Kenny, J.M.; Rescignano, N.: Membrane made of cellulose acetate with polyacrylic acid reinforced with carbon nanotubes and its applicability for chromium removal. Int. J. Polym. Sci. 2015, 1–12 (2015)

    Article  Google Scholar 

  25. Frost, R.L.; Shovels, H.E.: Raman microprobe spectroscopy of halloysite. Clays Clay Miner. 45, 68–72 (1997)

    Article  Google Scholar 

  26. Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V.: Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011)

    Article  Google Scholar 

  27. Susanto, H.; Ulbrich, M.: Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives. J. Membr. Sci. 327, 125–135 (2009)

    Article  Google Scholar 

  28. Goh, P.S.; Ng, B.C.; Lau, W.J.; Ismail, A.F.: Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Sep. Purif. Rev. 44, 216–249 (2015)

    Article  Google Scholar 

  29. Rana, D.; Matsuura, T.: Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010)

    Article  Google Scholar 

  30. Ghanbaria, M.; Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Davoody, M.; Ismail, A.F.: Super hydrophilic \(\text{ TiO }_{2}\)/HNT nanocomposites as a new approach for fabrication of high performance thin film nanocomposite membranes for FO application. Desalination 371, 104–114 (2015)

    Article  Google Scholar 

  31. Peyravi, M.; Rahimpour, A.; Jahanshahi, M.: Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. J. Membr. Sci. 423, 225–237 (2012)

    Article  Google Scholar 

  32. Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Khadivi, M.A.; Astinchap, B.; Moradian, R.: Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J. Membr. Sci. 444, 184–191 (2013)

    Article  Google Scholar 

  33. Kumar, R.; Isloor, A.M.; Ismail, A.F.; Rashid, S.A.; Al Ahmed, A.: Permeation, antifouling and desalination performance of \(\text{ TiO }_{2}\) nanotube incorporated PSf/CS blend membranes. Desalination 316, 76–84 (2013)

    Article  Google Scholar 

  34. Chung, T.-S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S.: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007)

    Article  Google Scholar 

  35. Niksefat, N.; Jahanshahi, M.; Rahimpour, A.: The effect of \(\text{ SiO }_{2}\) nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination 343, 140–146 (2014)

    Article  Google Scholar 

  36. Tiraferri, A.; Yip, N.Y.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M.: Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J. Membr. Sci. 367, 340–352 (2011)

    Article  Google Scholar 

  37. Hummer, G.; Rasaiah, J.C.; Noworyta, J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)

    Article  Google Scholar 

  38. Wang, K.Y.; Ong, R.C.; Chung, T.-S.: Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer. Ind. Eng. Chem. Res. 49, 4824–4831 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Kuwait Institute for Scientific Research (KISR) for funding and supporting the implementation of this research work. Furthermore, we would like to acknowledge, with much appreciation, the crucial role played by the staff of the Doha Research Station of KISR, who helped us to assemble the experimental setup and gave fruitful comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesha Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Ahmed, M., Garudachari, B. et al. Evaluation of the Forward Osmosis Performance of Cellulose Acetate Nanocomposite Membranes. Arab J Sci Eng 43, 5871–5879 (2018). https://doi.org/10.1007/s13369-017-3048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3048-3

Keywords

Navigation