Skip to main content

Advertisement

Log in

Impact of Seawater Intrusion on the Geochemistry of Groundwater of Gwadar District, Balochistan and Its Appraisal for Drinking Water Quality

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Thirty-one groundwater samples were collected from Jiwani, Ganz, Pishukan, Gwadar and Sur Bander, coastal towns of Gwadar District, Balochistan Province, Pakistan. The overall average trend of cationic and anionic distributions is found in the order of \(\hbox {Na}^{+}>\hbox {Ca}^{2+}>\hbox {Mg}^{2+}>\hbox {K}^{+}\) and \(\hbox {Cl}^{-}>\hbox {SO}_{4}^{2-}> \hbox {HCO}_{3}^{-}>\hbox {NO}_{3}^{-}>\hbox {CO}_{3}^{2-}>\hbox {F}^{-}\), respectively. Average ionic composition on Stiff diagram shows (\(\hbox {Na}^{+}+\hbox {K}^{+})\hbox {--}\hbox {Cl}^{-}\) as one of the principal ionic pair, while ionic balance among \(\hbox {Mg}^{2+}\hbox {--}\hbox {SO}_{4}^{2-}\) and \(\hbox {Ca}^{2+}\hbox {--} (\hbox {HCO}_{3}^{-}+\hbox {CO}_{3}^{2-})\) have shown an imbalance. On Piper diagram, majority of the groundwater samples in the study area are of NaCl type. The \(\hbox {Na}^{+}\) versus \(\hbox {Cl}^{-}, \hbox {Na}^{+}/\hbox {Na}^{+}+\hbox {Cl}^{-}\) versus \(\hbox {Cl}^{-}/\sum \) anions, and Cl versus \(\hbox {Cl}/\hbox {HCO}_{3}\) ratios signify influence of seawater intrusion in the coastal strip of Gwadar District. The impact of seawater encroachment in the coastal regions has also been proved by hydrochemical facies evolution diagram and Piper plots. Principal component analysis reveals three major factors, whereas high positive loading of \(\hbox {Na}^{+}\), \(\hbox {Ca}^{2+}\), \(\hbox {Mg}^{2+}\), \(\hbox {Cl}^{-}\), \(\hbox {SO}_{4}^{2-}\) and TDS reveal association with seawater. Potassium, nitrate and bicarbonate are in other domain; their relation with pH being rather negative. Moreover, fluoride and carbonate should be confined to separate realms, specifying of good relation among the two ions. Concentrations of nitrate and fluoride are found to be higher than the WHO permissible limit and may therefore pose a health threat to the local population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, H.; Jiao, J.J.: Impact of coastal land reclamation on ground water level and the sea water interface. Groundwater 45(3), 362–367 (2007)

    Article  Google Scholar 

  2. Kiro, Y.; Weinstein, Y.; Starinsky, A.; Yechieli, Y.: Groundwater ages and reaction rates during seawater circulation in the Dead Sea aquifer. Geochim. Cosmochim. Acta 122, 17–35 (2013)

    Article  Google Scholar 

  3. Evans, W.C.; Hurwitz, S.; Bergfeld, D.; Lewicki, J.; Huebner, M.A.; Williams, C.F.; Brown, S.T.: Water–rock interaction in the Long Valley Caldera (USA). Procedia Earth Planet Sci. 2013(7), 252–255 (2013)

    Article  Google Scholar 

  4. Frondini, F.; Zucchini, A.; Comodi, P.: Water–rock interactions and trace elements distribution in dolomite aquifers: the Sassolungo and Sella systems (Northern Italy). Geochem. J. 48, 231–246 (2014)

    Article  Google Scholar 

  5. Kim, K.; Rajmohan, N.; Kim, H.; Kim, S.; Wang, G.; Yun, S.; Gu, B.; Cho, M.J.; Lee, S.: Evaluation of geochemical processes affecting groundwater chemistry based on mass balance approach: a case study in Namwon, Korea. Geochem. J. 39, 357–369 (2005)

    Article  Google Scholar 

  6. Qureshi, R.M.; Mashiatullah, A.; Fazil, M.; Ahmad, E.; Khan, H.A.; Sajjad, M.I.: Seawater pollution studies of the Pakistan coast using stable carbon isotope technique. Sci. Vis. 7, 224–229 (2002)

    Google Scholar 

  7. Kassi, A.M.; Khan, A.S.; Kasi, A.K.: Newly proposed Cretaceous–Palaeocene lithostratigraphy of the Ispikan-Wakai area, southwestern Makran, Pakistan. JHES 40, 25–31 (2007)

    Google Scholar 

  8. Grigsby, J.D.; Kassi, A.M.; Khan, A.S.: Petrology and geochemistry of the Oligocene-early Miocene Panjgur Formation and upper Cretaceous Palaeocene Ispikan Formation and Wakai mélange in the Makran Accretionary Belt, southwest Pakistan. In: Abstract, Geological Society of America, Annual Meeting, Colorado, USA, 9th November 2004(GSA Abstracts with Programs), vol. 36(5) (2004)

  9. Nicholson, K.; Kassi, A.M.; Grigsby, J.; Khan, A.S.: Petrology and geochemistry of the maficintermediate volcanic Rocks of the Makran Accretionary Wedge, southeast Pakistan. In: Abstract, Geological Society of America, 37th North Central Meeting, Kansas City, Missouri, USA (2003)

  10. Kassi, A.M.; Kasi, A.K.; McManus, J.; Khan, A.S.: Lithostratigraphy, petrology and sedimentary facies of the Late Cretaceous–Palaeocene Ispikan Group, southwestern Makran, Pakistan. JHES 46(2), 49–63 (2013)

    Google Scholar 

  11. Naseem, S.; Naseem, S.; Bashir, E.; Shirin, K.; Sheikh, S.A.: Biogeochemical evaluation of Nannorrhop ritchina: a Mg-flora from Khuzdar, Balochistan, Pakistan. Chin. J. Geochem. 24(4), 327–337 (2005)

    Article  Google Scholar 

  12. Naseem, S.; Ahmed, P.; Shamim, S.S.; Bashir, E.: Geochemistry of sulphate-bearing water of Akra Kaur Dam, Gwadar, Balochistan, Pakistan and its assessment for drinking and irrigation purposes. Environ. Earth Sci. 66(7), 1831–1838 (2012)

    Article  Google Scholar 

  13. Malkani, M.S.: Stratigraphy, mineral potential, geological history and Paleobiogeography of Balochistan Province, Pakistan. SURJ (Sci. Ser.) 43(2), 269–290 (2011)

    Google Scholar 

  14. Kazmi, A.H.; Abbasi, I.A.: Stratigraphy and Historical Geology of Pakistan. Graphic Publishers, Karachi (2008)

    Google Scholar 

  15. HSC (Hunting Survey Co. Ltd.): Reconnaissance Geology of Part of West Pakistan; a Colombo Plan-Co-Operative Project, Canada (1960)

  16. Hussain, J.; Butt, K.A.; Pervaiz, K.: Makran coast: a potential seismic risk belt. Geol. Bull. Univ. Peshawar 35, 43–56 (2002)

    Google Scholar 

  17. MOE: Land Use Atlas of Pakistan, National, Land Use Plan Project, Ministry of Environment, Government of Pakistan (2009)

  18. Ghoraba, S.M.; Khan, A.D.: Hydrochemistry and groundwater quality assessment in Balochistan province, Pakistan. IJRRAS 17(2), 185–199 (2013)

    Google Scholar 

  19. APHA: Standard Methods for the Examination of Water and Wastewater, 19th ed. APHA, Washington (1995)

  20. Greenberg, E.; Connors, J.; David, J.: Standard Methods for the Examination of Water and Wastewater. APHA, Washington, DC (1998)

    Google Scholar 

  21. Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D.: Standard Methods for the Examination of Water and Wastewater, 20th edn. APHA, Washington (1998)

    Google Scholar 

  22. Giménez-Forcada, E.; San Román, F.J.S.S.: An excel macro to plot the HFE-diagram to identify sea water intrusion phases. Groundwater (2014). doi:10.1111/gwat.12280

  23. Pulido-Leboeuf, P.; Pulido-Bosch, A.; Calvache, M.L.; Vallejos, A.; Andreu, J.M.: Strontium, \(\text{ SO }_{4}^{2-}/\text{ Cl }^{-}\) and \(\text{ Mg }^{2+}/\text{ Ca }^{2+}\) ratios as tracers for the evolution of seawater into coastal aquifers: the example of Castell de Ferro aquifer (SE Spain). C. R. Geosci. 335, 1039–1048 (2003)

    Article  Google Scholar 

  24. Piper, A.M.: A graphic procedure in the geochemical interpretation of water-analyses. Trans. Am. Geophys. Union 25, 914–923 (1944)

    Article  Google Scholar 

  25. Ekhmaj, A.; Ezlit, Y.; Elaalem, M.: The situation of seawater intrusion in Tripoli, Libya. In: International Conference on Biological, Chemical and Environmental Sciences (BCES-2014) June 14–15, 2014 Penang (Malaysia) (2014)

  26. Davis, S.N.; DeWiest, R.J.M.: Hydrogeology. Wiley, New York (1970)

    Google Scholar 

  27. Morrel, I.; Pulido-Bosch, A.; Fernandez, R.: Rubio, hydro geochemical analysis of salinization processes in the coastal aquifers of Oropesa, Spain. Environ. Geol. 29, 118–131 (1986)

    Google Scholar 

  28. Bashir, E.; Naseem, S.; Kaleem, M.; Khan, Y.; Hamza, S.: Study of serpentinized ultramafic rocks of Bela Ophiolite, Balochistan, Pakistan. J. Geogr. Geol. Can. 4(1), 79–89 (2012)

    Google Scholar 

  29. Hounslow, A.W.: Water Quality Data: Analysis and Interpretation. CRC Press LLC, Lewis Publishers, Florida (1995)

    Google Scholar 

  30. El-Fiky, A.A.: Hydrogeochemical characteristics and evolution of groundwater at the Ras Sudr-Abu Zenima Area, Southwest Sinai, Egypt. JKAU: Earth Sci. 21(1), 79–109 (2010)

    Google Scholar 

  31. Revelle, R.: Criteria for recognition of sea water in ground water. Trans. Am. Geophys. Union 22, 593–597 (1941)

    Article  Google Scholar 

  32. Al-Khatib, M.; Al-Najar, H.: Hydro-geochemical characteristics of groundwater beneath the Gaza Strip. JWARP 3, 341–348 (2011)

    Article  Google Scholar 

  33. Babu, M.M.; Viswanadh, G.K.; Rao, S.V.: Assessment of saltwater intrusion along coastal areas of Nellore District, A.P. IJSER 4(7), 173–178 (2013)

    Google Scholar 

  34. Kelly, D.J.: Development of seawater intrusion protection regulations. In: Proceedings 1st SWIM–SWICA Joint Saltwater Intrusion Conference, pp. 135–146, Cagliari-Chia Laguna, Italy (2006)

  35. Mikkelson, N.; Ellis, D.; Beavis, S.; Kirste, D.: The geochemistry of a coastal aquifer system: Merimbula, NSW’. In: Fitzpatrick, R.W., Shand, P. (eds.) CRC LEME Regional RegolithSymposia 2006. CRC LEME, Bentley, Western Australia, pp. 244–248 (2006)

  36. Chachadi, A.G.; Ferreira, J.P.L.: Assessing aquifer vulnerability to sea-water intrusion using GALDIT method: part 2—GALDIT indicators description. In: 4th Inter-celtic Colloquium on Hydrology and Management of Water Resources, Guimaräer, Portugal (2005)

  37. Giménez-Forcada, E.: Dynamics of seawater interface using hydrochemical facies evolution diagram. Groundwater 48(2), 212–216 (2010)

    Article  Google Scholar 

  38. Gopinath, S.; Srinivasamoorthy, K.: Application of geophysical and hydrogeochemical tracers to investigate salinization sources in Nagapatinam and Karaikal coastal aquifers, South India. Intern. Conf. on water resources, coastal and ocean engineering (icwrcoe 2015). Aquat. Procedia 4, 65–71 (2015)

  39. Casellato, S.; Masiero, L.; Ballarina, L.: Toxicity of fluoride to the freshwater mollusc Dreissena polymorpha: effects on survival, histology, and antioxidant enzyme activity. Fluoride 45(1), 35–46 (2012)

    Google Scholar 

  40. El Maghraby, M.M.S.: Geochemical and isotopic evidence of seawater intrusion into the Shallow Pleistocene Coastal Aquifer, West Alexandria, Egypt. Life Sci. J. 11(7), 749–762 (2014)

    Google Scholar 

  41. Arasu, P.T.; Murugan, A.: Physico chemical study on the sea water intrusion in Tuticorin Coastal Area. Int. J. ChemTech. Res. 5(4), 1824–1828 (2013)

    Google Scholar 

  42. Chen, Q.; Song, Z.; Lu, Q.; Wang, M.; Feng, J.; Tian, H.; Liu, J.; Li, X.; Zhang, R.: Fluorine contents and its characteristics of groundwater in fluorosis area in Laizhou Bay, China. Toxicol. Environ. Chem. 94(8), 1490–1501 (2012)

    Article  Google Scholar 

  43. Seo, J.: Solving the Mystery of the Atacama Nitrate Deposits: the use of stable oxygen isotope analysis and geochemistry. JPUR 1, 38–45 (2011)

    Article  Google Scholar 

  44. WHO: Nitrate and Nitrite in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality. WHO, Geneva (2011)

  45. Radomski, J.L.; Palmiri, C.; Hearn, W.L.: Concentrations of nitrate in normal human urine and the effect of nitrate ingestion. Toxicol. Appl. Pharmacol. 45(1), 63–68 (1978)

    Article  Google Scholar 

  46. Ayeni, A.O.; Soneyen, A.S.O.: Interpretation of surface water quality using principal components analysis and cluster analysis. J. Geogr. Reg. Plan. 6(4), 132–141 (2013)

    Article  Google Scholar 

  47. Wu, Z.Z.; Che, Z.W.; Wang, Y.S.; Dong, J.D.; Wu, M.L.: Identification of Surface Water Quality along the Coast of Sanya, South China Sea. PLoS ONE (2015). doi:10.1371/journal.pone.0123515

  48. Bhat, S.A.; Meraj, G.; Yaseen, S.; Pandit, A.K.: Statistical assessment of water quality parameters for pollution source identification in Sukhnag stream: an inflow stream of Lake Wular (Ramsar Site), Kashmir Himalaya. J. Ecosyst. Article ID 898054 (2014)

  49. Huang, Y.; Yang, C.; Lee, Y.; Tang, P.; Hsu, W.: Variation of groundwater quality in seawater intrusion area using cluster and multivariate factor analysis. In: Sixth International Conference on Natural Computation (ICNC 2010), pp. 3021–3025. IEEE (2010)

  50. Kura, N.U.; Ramli, M.F.; Sulaiman, W.N.A.; Ibrahim, S.; Aris, A.Z.; Mustapha, A.: Evaluation of factors influencing the groundwater chemistry in a small tropical island of Malaysia. Int. J. Environ. Res. Public Health 10, 1861–1881 (2013)

    Article  Google Scholar 

  51. Mtoni, Y.; Mjemah, I.C.; Bakundukize, C.; Camp, M.V.; Martens, K.; Walraevens, K.: Saltwater intrusion and nitrate pollution in the coastal aquifer of Dar es Salaam, Tanzania. Environ. Earth Sci. 70(3), 1091–1111 (2013)

    Article  Google Scholar 

  52. Voudouris, K.; Panagopoulos, A.; Koumantakis, I.: Nitrate pollution in the coastal aquifer system of the Korinthos prefecture (Greece). Glob. Nest: Int. J. 6(1), 31–38 (2004)

    Google Scholar 

  53. Rafique, T.; Naseem, S.; Usmani, T.H.; Bashir, E.; Khan, F.A.; Bhanger, M.I.: Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan. J. Hazard Mater. 171, 424–430 (2009)

    Article  Google Scholar 

  54. Khan, S.M.M.N.; Ravikumar, A.: Role of alkalinity for the release of fluoride in the groundwater of Tiruchengode Taluk, Namakkal District, Tamilnadu, India. Chem. Sci. Trans. 2(S1), S302–S308 (2013)

    Google Scholar 

  55. WHO: Sodium in Drinking-Water, Guidelines for Drinking-Water Quality, 2nd ed., vol. 2. Health Criteria and Other Supporting Information. WHO, Geneva (1996)

  56. Siegel, L.: Hazard Identification for Human and Ecological Effects of Sodium Chloride Road Salt. State of New Hampshire Department of Environmental Services Water Division Watershed Management Bureau (2007)

  57. WHO: Potassium in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality. WHO, Geneva (2009)

  58. WHO: Chloride in Drinking-Water, Guidelines for Drinking-Water Quality, 2nd ed., vol. 2. Health Criteria and Other Supporting Information. WHO, Geneva (2003)

  59. WHO: Sulfate in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality. WHO, Geneva (2004)

  60. Backer, L.C.: Assessing the acute gastrointestinal effects of ingesting naturally occurring, high levels of sulfate in drinking water. Crit. Rev. Clin. Lab. Sci. 37, 389–400 (2000)

    Article  Google Scholar 

  61. Tallgren, L.G.: Inorganic sulfates in relation to serum thyroxin level and in renal failure. Acta. Med. Scand. 640, 1S–100S (1980)

    Google Scholar 

  62. Cole, D.E.C.; Evrovski, J.: The clinical chemistry of inorganic sulfate. Crit. Rev. Clin. Lab Sci. 37, 299–344 (2000)

    Article  Google Scholar 

  63. Sengupta, P.: Potential health impacts of hard water. Int. J. Prev. Med. 4(8), 866–875 (2013)

    Google Scholar 

  64. Weaver, C.M.; Nieves, J.W.: Calcium and magnesium: role of drinking-water in relation to bone metabolism. In: Calcium and Magnesium in Drinking-Water: Public Health Significance, pp. 94–107 . WHO (2009)

  65. Durlach, J.; Bara, M.; Guiet-Bara, A.: Magnesium level in drinking water: its importance in cardiovascular risk. In: Itokawa, Y., Durlach, J. (eds.) Magnesium in Health and Disease, pp. 173–182. J. Libbey & Co Ltd, London (1989)

    Google Scholar 

  66. Sakamoto, N.; Shimizu, M.; Wakabayashi, I.; Sakamoto, K.: Relationship between mortality rate of stomach cancer and cerebrovascular disease and concentrations of magnesium and calcium in well water in Hyogo prefecture. Magnes. Res. 10, 215–223 (1997)

    Google Scholar 

  67. Kundu, N.; Panigrahi, M.K.; Tripathy, S.; Munshi, S.; Powell, M.A.; Hart, B.R.: Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa. Indian. Environ. Geol. 41, 451–460 (2001)

    Article  Google Scholar 

  68. BIS: Bureau of Indian Standards Drinking Water-Specifications, 10500. New Delhi, India (2010)

  69. WHO: Guidelines for Drinking-Water Quality, 4th ed. WHO, Geneva (2011)

  70. WHO: Nitrate and Nitrite Sulfate in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality. WHO, Geneva (2011)

  71. Manassaram, D.M.; Baker, L.C.; Moll, D.M.: A review of nitrates in drinking water: maternal exposure and adverse reproductive and developmental outcomes. Ciência & Saúde Coletiva 12(1), 153–163 (2007)

    Article  Google Scholar 

  72. Powlson, D.S.; Addiscott, T.M.; Benjamin, N.; Cassman, K.G.; DeKok, T.M.; van Grinsven, H.; L’hirondel, J.L.; Avery, A.A.; van Kessel, C.: When Does Nitrate Become a Risk for Humans? pp. 291–295. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Naseem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseem, S., Bashir, E., Ahmed, P. et al. Impact of Seawater Intrusion on the Geochemistry of Groundwater of Gwadar District, Balochistan and Its Appraisal for Drinking Water Quality. Arab J Sci Eng 43, 281–293 (2018). https://doi.org/10.1007/s13369-017-2679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2679-8

Keywords

Navigation