Skip to main content
Log in

High-Resolution, Fully Distributed Hydrologic Event-Based Simulations Over a Large Watershed in Texas

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The spatial variability of watershed characteristics has to be considered in detail when developing a flood prediction model because it has great influence on the generation of runoff and other hydrologic processes. Physically based, distributed-parameter models can use detailed watershed data that are becoming more readily available to improve hydrologic simulations. However, the computational penalty can be very high for simulations over large catchments. In this study, a physically based, distributed-parameter hydrologic model was used to simulate different flooding events over an 11,285 \(\hbox {km}^{2}\) basin at 150 m \(\times \) 150 m grid resolution. To overcome the computational demand, the model was run on nine sub-catchments separately, without losing hydrologic connectivity among the sub-catchments. The outflow from an upstream sub-basin was used as the inflow into the next sub-basin, allowing this inflow to join the flow generated in the downstream sub-basin in a dynamic mode. Rainfall data from weather radar were used as input. This approach also allowed excluding certain sub-basins from the model simulations without affecting the hydrologic connectivity. A calibration was performed on one sub-basin only, and then, the model was validated over the entire watershed. The simulation results were reasonable and similar to results from single catchment simulations. By using this approach, it was possible to employ observed stream discharge at interior points of a catchment as part of the model inputs. It will also make it possible to run fully distributed, physically based models over very large catchments at very high resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mulvaney, T.J.: On the use of self registering rain and flood gauges. Paper presented at Institution of Civil Engineers proceedings, Dublin (1850)

  2. Crawford, N.H.; Linsley, R.K.: Digital Simulation in Hydrology: Stanford Watershed Model IV, Technical Report 39. Stanford University, California, Dept. of Civil Engineering (1966)

  3. Sugawara, M.: The flood forecasting by a series storage type model. In: International Symposium on Floods and their Computation, pp. 555–560. Publication No. 84. International Association Of Scientific Hydrology, UNESCO (1967)

  4. Leo, R.B.: HEC-1 Flood Hydrograph Package. http://www.nwk.usace.army.mil/regulatory/BNSF/Final/CorpsHEC1998.pdf (1967). Accessed 18 May 2015

  5. Xing, C.; Zhongbo, Y.; Guangbai, C.: Hydrologic simulation with a distributed hydrologic model. Paper presented at 2008 Fourth International Conference on Natural Computation (ICNC), pp. 18–20. IEEE. Piscaatway, NJ, USA (Oct 2008) (2008)

  6. Freeze, R.A.; Harlan, R.L.: Blueprint for a physically-based, digitally-simulated hydrologic response model. J. Hydrol. 9(3), 237–258 (1969)

    Article  Google Scholar 

  7. Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J.: An introduction to the European hydrological system—Systeme Hydrologique Europeen, “SHE”: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 87(1–2), 45–59 (1986)

    Article  Google Scholar 

  8. Refsgaard, J.C.; Storm, B.; Refsgaard, A.: Recent developments of the Systeme Hydrologique Europeen (SHE) towards the MIKE SHE. Paper presented at Proceedings of the 1995 XXI General Assembly of the International Union of Geodesy and Geophysics, July 1, 1995–July 14, 1995, IAHS, Boulder, CO, USA (1995)

  9. Ewen, J.; Parkin, G.; O’Connell, P.E.: SHETRAN: distributed river basin flow and transport modeling system. J. Hydrol. Eng. 5(3), 250–258 (2000)

    Article  Google Scholar 

  10. Im, S.; Kim, H.; Kim, C.; Jang, C.: Assessing the impacts of land use changes on watershed hydrology using MIKE SHE. Environ. Geol. 57(1), 231–239 (2009)

    Article  Google Scholar 

  11. Jayatilaka, C.J.; Storm, B.; Mudgway, L.B.: Simulation of water flow on irrigation bay scale with MIKE-SHE. J. Hydrol. 208(1–2 /2), 108–130 (1998)

    Article  Google Scholar 

  12. McMichael, C.E.; Hope, A.S.; Loaiciga, H.A.: Distributed hydrological modelling in California semi-arid shrublands: MIKE SHE model calibration and uncertainty estimation. J. Hydrol. 317(3–4), 307–324 (2006)

    Article  Google Scholar 

  13. Lamb, K.J.B.R.; Quinn, P.; Romanowicz, R.; Freer, J.: TOPMODEL. In: Singh, V.P. (ed.) Computer Models of Watershed Hydrology, pp. 627–668. Water Resources Publications, Littleton (1995)

    Google Scholar 

  14. Campling, P.; Gobin, A.; Beven, K.; Feyen, J.: Rainfall-runoff modelling of a humid tropical catchment: the TOPMODEL approach. Hydrol. Process. 16(2), 231–253 (2002)

    Article  Google Scholar 

  15. Chen, Y.; Zhu, D.; Zhao, J.: Small Basin Flash Flood Simulation with TOPMODEL. IAHS Press, Wallingford (2004)

    Google Scholar 

  16. Iorgulescu, I.; Jordan, J.P.: Validation of TOPMODEL on a small Swiss catchment. J. Hydrol. 159(1–4), 255–273 (1994)

    Article  Google Scholar 

  17. Kouwen, N.: WATFLOOD: a micro-computer based flood forecasting system based on real-time weather radar. Can. Water Resour. J. 13(1), 62–77 (1988)

    Article  Google Scholar 

  18. De Roo, A.P.J.; Wesseling, C.G.; Van Deursen, W.P.A.: Physically based river basin modelling within a GIS: the LISFLOOD model. Paper presented at Geocomputation in Hydrology and Geomorphology, 3rd International Conference, 1998, Wiley, UK (2000)

  19. Koren, V.I.; Reed, S.; Smith, M.; Zhang, Z.; Seo, D.-J.: Hydrology laboratory research modeling system (HL-RMS) of the US National Weather Service. J. Hydrol. 291, 297–318 (2004). doi:10.1016/j.jhydrol.2003.12.039

    Article  Google Scholar 

  20. Smith, M.; Koren, V.; Zhang, Z.; Zhang, Y.; Reed, S.; Cui, Z.; Moreda, F.; Cosgrove, B.; Mizukami, N.; Anderson, E.; Participants, D.M.I.P.: Results of the DMIP 2 Oklahoma experiments. J. Hydrol. 418–419, 17–48 (2012). doi:10.1016/j.jhydrol.2011.08.056

    Article  Google Scholar 

  21. Sharif, H.O.; Ogden, F.L.: Mass conserving remapping of radar data onto two-dimensional Cartesian coordinates for hydrologic applications. J. Hydrometeorol. 15(6), 2190–2202 (2014). doi:10.1175/JHM-D-14-0058.1

    Article  Google Scholar 

  22. Sharif, H.O.; Hassan, A.A.; Bin-Shafique, S.; Xie, H.; Zeitler, J.: Hydrologic modeling of an extreme flood in the Guadalupe river in Texas. J. Am. Water Resour. Assoc. 46(5), 881–891 (2010). doi:10.1111/j.1752-1688.2010.00459.x

    Article  Google Scholar 

  23. Kleinn, J.; Frei, C.; Gurtz, J.; Lüthi, D.; Vidale, P.L.; Schär, C.: Hydrologic simulations in the Rhine basin driven by a regional climate model. J. Geophys. Res. 110, D04102 (2005). doi:10.1029/2004JD005143

    Article  Google Scholar 

  24. Reed, S.; Koren, V.; Smith, M.; Zhang, Z.; Moreda, F.; Seo, D.-J.; Participants, D.M.I.P.: Overall distributed model intercomparison project results. J. Hydrol. 298, 27–60 (2004). doi:10.1016/j.jhydrol.2004.03.031

    Article  Google Scholar 

  25. Zehe, E.; Lee, H.; Sivapalan, M.: Dynamical process upscaling for deriving catchment scale state variables and constitutive relations for meso-scale process models. Hydrol. Earth Syst. Sci. 10(6), 981–996 (2006)

    Article  Google Scholar 

  26. Montanari, A.; Koutsoyiannis, D.: A blueprint for process-based modeling of uncertain hydrological systems. Water Resour. Res. 48, W09555 (2012). doi:10.1029/2011WR011412

    Article  Google Scholar 

  27. Beven, K.J.: On hypothesis testing in hydrology. Hydrol. Process. 15(9), 1655–1657 (2001)

    Article  Google Scholar 

  28. Beven, K.: Changing ideas in hydrology—the case of physically-based models. J. Hydrol. 105(1), 157–172 (1989)

    Article  Google Scholar 

  29. Pappenberger, F.; Beven, K.J.: Ignorance is bliss: or seven reasons not to use uncertainty analysis. Water Resour. Res. 42(5), 1–8 (2006). doi:10.1029/2005WR004820

    Article  Google Scholar 

  30. Ogden, F.; Downer, C.; Meselhe, E.: U.S. army corps of engineers gridded surface/subsurface hydrologic analysis (GSSHA) model: distributed-parameter, physically based watershed simulations. World Water Environ. Resour. Congress 2003, 1–10 (2003). doi:10.1061/40685(2003)376

    Google Scholar 

  31. Downer, C.W.; Ogden, F.L.: GSSHA: model to simulate diverse stream flow producing processes. J. Hydrol. Eng. 9(3), 161–174 (2004)

    Article  Google Scholar 

  32. Sharif, H.O.; Chintalapudi, S.; Elhassan, A.; Xie, H.; Zeitler, J.: Physically-based hydrological modeling of the 2002 floods in San Antonio, Texas. J. Hydrol. Eng. 18(2), 228–236 (2013). doi:10.1061/(ASCE)HE.1943-5584.0000475

    Article  Google Scholar 

  33. Furl, Chad; Sharif, Hatim O.; El Hassan, Almoutaz; Mazari, Newfel; Burtch, Daniel; Mullendore, Gretchen: Hydrometeorological analysis of Tropical Storm Hermine and Central Texas flash flooding, September 2010. Journal of Hydrometeorology. 16(6), 2311–2327 (2015). doi:10.1175/JHM-D-14-0146

    Article  Google Scholar 

  34. Chintalapudi, S.; Sharif, H.O.; Yeggina, S.; Elhassan, A.: Physically-based, hydrologic model results based on three precipitation products. J. Am. Water Resour. Assoc. 48(6), 1191–1203 (2012). doi:10.1111/j.1752-1688.2012.00679.x

    Article  Google Scholar 

  35. Ogden, F.L.; Pradhan, N.R.; Nelson, E.J.; Downer, C.W.: Predicting hydrologic effects of land-use change: problems with the curve number approach. Paper Presented at World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, May 22, 2011–May 26, 2011, American Society of Civil Engineers (ASCE). Palm Springs, CA, United states (2011)

  36. Elhassan, A.; Sharif, H.O.; Jackson, T.; Chintalapudi, S.: Performance of a conceptual and a physically-based model in simulating the response of a semi-urbanized watershed in San Antonio, Texas. Hydrol. Process. 27, 3394–3408 (2013). doi:10.1002/hyp.9443

    Article  Google Scholar 

  37. Chintalapudi, S.; Sharif, H.O.; Xie, H.: Sensitivity of distributed hydrologic simulations to ground and satellite based rainfall. Water 6, 1221–1245 (2014). doi:10.3390/w6051221

    Article  Google Scholar 

  38. Niedzialek, J.M.; Ogden, F.L.: Physics-Based Distributed Rainfall-Runoff Modeling of Urbanized Watersheds Revisited with GSSHA, paper presented at World Water and Environmental Resources Congress 2003, June 23, 2003–June 26, 2003. American Society of Civil Engineers, Philadelphia (2003)

    Google Scholar 

  39. Sharif, H.O.; Sparks, L.; Hassan, A.A.; Zeitler, J.; Xie, H.: Application of a distributed hydrologic model to the November 17, 2004 Flood of Bull Creek Watershed, Austin, Texas. J. Hydrol. Eng. 15(8), 651–657 (2010b). doi:10.1061/(ASCE)HE.1943-5584.0000228

    Article  Google Scholar 

  40. Sharif, H.O.; Yates, D.; Roberts, R.; Mueller, C.: The use of an automated now-casting system to forecast flash floods in an urban watershed. J. Hydrometeorol. 7, 190–202 (2006). doi:10.1175/JHM482.1

    Article  Google Scholar 

  41. Todini, E.: Hydrological catchment modelling: past, present and future. Hydrol. Earth Syst. Sci. 11(1), 468–482 (2007)

    Article  Google Scholar 

  42. GSSHA Primer: GSSHA model description and formulation. http://gsshawiki.com/gssha/GSSHA_Primer#Description (2012). Accessed 18 May 2015

  43. Ogden, F.L.; Saghafian, B.: Green and Ampt infiltration with redistribution. J. Irrig. Drain. Eng. 123(5), 386–393 (1997)

    Article  Google Scholar 

  44. Gsshawiki: Information of GSSHA model. http://gsshawiki.com/gssha/Main_Page (2015). Accessed 18 May 2015

  45. FloodSafety: South Central Texas June 30-July 7, 2002 floods. http://www.floodsafety.com/texas/documentaries/j2002/index.htm (2014). Accessed 18 May 2015

  46. NWS: National Weather Service, Southern Region Headquarters website. Flood images. http://www.srh.noaa.gov/images/crp/stories/flood/july02/total_rain.jpg (2015). Accessed 18 May 2015

  47. NWS: National Weather Service, Texans Experience Wettest November on Record 2004 May Become State’s Wettest Year. http://www.srh.noaa.gov/srh/srnews/stories/2004/nov04_rain.htm (2015). Accessed 18 May 2015

  48. NASA: National Aeronautics and Space Administration., NASAImage: Heavy Rains Drench Texas. http://visibleearth.nasa.gov/view.php?id=14255 (2015). Accessed 18 May 2015

  49. NWS: National Weather Service, Southern Region Headquarters website. A Look Back in History. In South Texas Weather Journal, 2007–08 Winter Edition. http://www.srh.noaa.gov/images/crp/docs/stwj/STWJFall07.pdf (2015). Accessed 18 May 2015

  50. NASA: National Aeronautics and Space Administration. Earth Observatory Image of Tropical Storm Erin. http://earthobservatory.nasa.gov/IOTD/view.php?id=7980&eocn=image&eoci=related_image (2015). Accessed 18 May 2015

  51. EMRL: Watershed Modeling System (WMS) Version 8.0 Tutorial. Brigham Young University, Environmental Modeling Research Laboratory, Utah (2006)

  52. Seo, D.-J.; Seed, A.; Delrieu, G.: Radar-based rainfall estimation, chapter in 549 geophysical monograph 191. In: Testik, F., Gebremichael, M. (eds.) Rainfall: State of the Science, pp. 79–104. American Geophysical Union, Washington, DC (2010)

    Chapter  Google Scholar 

  53. Wang, X.; Xie, H.; Sharif, H.O.; Zeitler, J.: Comparison of NEXRAD MPE and Stage III precipitation products at the Upper Guadalupe River basin. Texas Hill Country. J. Hydrol. 348(1–2), 73–86 (2008). doi:10.1016/j.jhydrol.2007.09.057

    Google Scholar 

  54. HydroDesktop: Information on CUASHI Hydro Desktop. http://hydrodesktop.codeplex.com/ (2015). Accessed 18 May 2015

  55. Sahoo, G.B.; Ray, C.; De Carlo, E.H.: Calibration and validation of a physically distributed hydrological model. MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream. J. Hydrol. 327(1–2), 94–109 (2006)

    Article  Google Scholar 

  56. Carpenter, T.; Georgakakos, K.; Sperfslagea, J.: On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use. J. Hydrol. 253(1–4), 169–193 (2001)

    Article  Google Scholar 

  57. James, W.; Robinson, C.; Bell, J.: Radar-assisted real time flood forecasting. J. Water Resour. Plann. Manag. 119(1), 32–44 (1993)

    Article  Google Scholar 

  58. Fang, Z.; Bedient, P.; Benevides, J.; Zimmer, A.: Enhanced radar-based flood alert system and floodplain map library. J. Hydrol. Eng. 13(10), 926–938 (2008)

    Article  Google Scholar 

  59. Wu, T.; Gilbert, D.; Fuelberg, H.; Cooper, H.; Bottcher, D.; Reed, C.: Doppler-derived rainfall data monitoring to support surface water modeling of TMDL. J. Coastal Res. 52, 273–280 (2008)

    Article  Google Scholar 

  60. Potter, K.W.; Walker, J.F.: A model of discontinuous measurement error and its effects on the probability distribution of flood discharge measurements. Water Resour. Res. 17(5), 1505–1509 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatim O. Sharif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chintalapudi, S., Sharif, H.O. & Furl, C. High-Resolution, Fully Distributed Hydrologic Event-Based Simulations Over a Large Watershed in Texas. Arab J Sci Eng 42, 1341–1357 (2017). https://doi.org/10.1007/s13369-017-2446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2446-x

Keywords

Navigation