Skip to main content

Advertisement

Log in

Modelling and Genetic Algorithm Based-PID Control of H-Shaped Racing Quadcopter

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This work presents a detailed mathematical modelling of H-shaped racing quadcopter. The complete nonlinear dynamic model is obtained by exploiting Newton–Euler method as a common technique used in quadcopter modelling. A trajectory tracking controller is proposed, in which four PID controllers are designed to stabilize the quadcopter and to achieve the required altitude and orientation. However, a nested loop PID controllers are designed to track the desired x and y position of the quadcopter. The PID coefficients for the aforementioned proposed controllers are tuned using genetic algorithm (GA). The objective function for the GA was set so as to minimize the absolute tracking error, peak overshoot, and settling time for a step inputs. A MATLAB/Simulink environment is used to conduct the system model and the designed controller. The closed loop system performance is depicted for individual step inputs and for a predefined trajectory. Simulation results show a perfect step response performance and excellent trajectory tracking capability with a very low error budget. Finally, the controller robustness is examined and it is shown that the designed controller is robust against sensor noise, external disturbances, and model parameters uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erginer, B.; Altug, E.: Modeling and PD control of a quadrotor VTOL vehicle. In: IEEE Intelligent Vehicles Symposium, pp. 894–899. IEEE (2007)

  2. Hamel, T.; Mahony, R.; Lozano, R.; Ostrowski, J.: Dynamic modelling and configuration stabilization for an X4-flyer. IFAC Proc. Vol. 35(1), 217–222 (2002)

    Article  Google Scholar 

  3. Mokhtari, A.; Benallegue, A.: Dynamic feedback controller of Euler angles and wind parameters estimation for a quadrotor unmanned aerial vehicle. In: IEEE International Conference on Robotics and Automation (ICRA’04), vol. 3, pp. 2359–2366 (2004)

  4. Zemalache, K.M.; Beji, L.; Marref, H.: Control of an under-actuated system: application a four rotors rotorcraft. In: IEEE International Conference on Robotics and Biomimetics-ROBIO, pp. 404–409 (2005)

  5. Tayebi, A.; McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  6. Bouabdallah, S.; Murrieri, P.; Siegwart, R.: Design and control of an indoor micro quadrotor. In: IEEE International Conference on Robotics and Automation (ICRA ’04), vol. 5, pp. 4393–4398 (2004)

  7. Bouabdallah, S.; Noth A.; Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. International Conference on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2451–2456 (2004)

  8. Bresciani, T.: Modelling, Identification and Control of a Quadrotor Helicopter. In: Department of Automatic Control. Master Thesis Lund: Lund University (2008)

  9. Bayrakceken, M.; Kemal, M.; Kursat Y.; Aydemir A.; Abdurrahman K.: HIL simulation setup for attitude control of a quadrotor. In: IEEE International Conference on Mechatronics (ICM), pp. 354–357. IEEE, Havard (2011)

  10. Çetinsoy, E.: Design and flight tests of a holonomic quadrotor UAV with sub-rotor control surfaces. In: IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1197–1202. IEEE (2013)

  11. Benallegue, A.; Moktari, A.; Fridman, L.: Feedback linearization and high order sliding mode observer for a quadrotor UAV. In: Proceedings of the 2006 International Workshop on Variable Structure Systems (2006)

  12. Lara, D.; Romero, G.; Sanchez A.; Lozano, R.: parametric robust stability analysis for attitude control of a four-rotor mini-rotorcraft. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 4351–4356. San Diego (2006)

  13. Li, J.; Li, Y.: Dynamic analysis and PID control for a quadrotor. In: IEEE International Conference on Mechatronics and Automation, pp. 573–578. Beijing (2011)

  14. Gupte, S.; Mohandas, P.I.T.; Conrad, J.M.: A survey of quadrotor unmanned aerial vehicles. In: Proceedings of IEEE Southeastcon, pp. 1–6 (2012)

  15. Stingu, E.; Lewis, F.: Design and implementation of a structured flight controller for a 6DoF quadrotor using quaternions. In: IEEE 17th Mediterranean Conference on in Control and Automation MED’09, pp. 1233–1238 (2009)

  16. Gruber, D.: The mathematics of the 3D rotation matrix. In: The Xtreme Game Developers Conference (2000)

  17. Padfield, G.D.: Helicopter Flight Dynamics. Wiley, New York (2008)

    Google Scholar 

  18. Cai, G.; Chen, B.M.; Lee, T.H.: Unmanned Rotorcraft Systems. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  19. Leishman, R.C.; Macdonald, J.C.; Beard, R.W.; McLain, T.W.: Quadrotors and accelerometers: state estimation with an improved dynamic model. IEEE Control Syst. 34(1), 28–41 (2014)

    Article  MathSciNet  Google Scholar 

  20. Mahony, R.; Kumar, V.; Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)

    Article  Google Scholar 

  21. Salih, A.L.; Moghavvemi, M.; Mohamed, H.A.; Gaeid, K.S.: Flight PID controller design for a UAV quadrotor. Sci. Res. Essays 5(23), 3660–3667 (2010)

    Google Scholar 

  22. Zhang, X.; Li, X.; Wang, K.; Lu, Y.: A survey of modelling and identification of quadrotor robot. Abstr. Appl. Anal. 2014, 1–16 (2014)

    Google Scholar 

  23. Mitchell, M.: An Introduction to Genetic Algorithms. MIT press, Cambridge (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Alkamachi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkamachi, A., Erçelebi, E. Modelling and Genetic Algorithm Based-PID Control of H-Shaped Racing Quadcopter. Arab J Sci Eng 42, 2777–2786 (2017). https://doi.org/10.1007/s13369-017-2433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2433-2

Keywords

Navigation