Skip to main content
Log in

Synthesis and Characterizations of Poly(phenoxy-Imine)s via Catalyzed Oxidative Polymerization by Polymer–Metal Complex

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, Schiff base was synthesized from the condensation reaction of 3,5-diaminobenzoic acid, 4,4\(^\prime \)-diaminobenzanilide, vanillin with 4-hydroxybenzaldehyde. Then, Schiff bases polymers were synthesized via oxidative polycondensation method in the presence of catalyst (polymer–metal complex) in organic solvent. Schiff base polymers were compared to the ones which were previously polymerized without catalyst. The structures of synthesized monomers and polymers were determined by FT-IR, NMR, SEC and SEM analyses; the optical characteristics by UV–Vis and fluorescence spectroscopy methods, solid state conductivity measurements by four-point probe technique, the electrochemical properties by CV analysis, thermal behaviors by TG-DTA and DSC measurements were effectively determined. Depending on the synthetic method of polymer, structural change, optical, electrochemical and thermal differences were measured. Availability of these polymers in the production of light-emitting diode, electronic–optoelectronic and thermal resistant materials was explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burroughes, J.H.; Bradley, D.D.C.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burn, P.L.; Holmes, A.B.: Light-emitting-diodes based on conjugated polymers. Nature 347, 539–541 (1990)

    Article  Google Scholar 

  2. Gal, Y.; Gal, S.; Jin, S.H.; Park, J.W.; Lim, K.T.: Synthesis and properties of poly(N-benzoyl-2-ethynylpyridinium chloride). J. Ind. Eng. Chem. 17, 282–286 (2011)

    Article  Google Scholar 

  3. Torsi, L.; Dodabalapur, A.: Organic thin-film transistors as plastic analytical sensors. Anal. Chem. 77, 380–387 (2005)

    Article  Google Scholar 

  4. Wang, L.; Fine, D.; Sharma, D.; Torsi, L.; Dodabalapur, A.: Nanoscale organic and polymeric field-effect transistors as chemical sensors. Anal. Bioanal. Chem. 384, 310–321 (2006)

    Article  Google Scholar 

  5. Ma, L.P.; Liu, J.; Yang, Y.: Organic electrical bi-stable devices and rewritable memory cells. Appl. Phys. Lett. 80, 2997 (2002)

    Article  Google Scholar 

  6. Lee, T.J.; Park, S.; Hahm, S.G.; Kim, D.M.; Kim, K.; Kim, J.; Kwon, W.; Kim, Y.; Chang, T.; Ree, M.: Programmable digital memory characteristics of nanoscale thin films of a fully conjugated polymer. J. Phys. Chem. C 113, 3855 (2009)

    Article  Google Scholar 

  7. Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992)

    Article  Google Scholar 

  8. Lee, J.; Hong, K.S.; Shin, K.; Jho, J.Y.: Fabrication of dye-sensitized solar cells using ordered and vertically oriented \(\text{ TiO }_{2}\) nanotube arrays with open and closed ends. J. Ind. Eng. Chem. 18, 19–23 (2012)

    Article  Google Scholar 

  9. Zaumseil, J.; Sirringhaus, H.: Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296–1323 (2007)

    Article  Google Scholar 

  10. Park, Y.W.: Magneto resistance of polyacetylene nanofibers. Chem. Soc. Rev. 39, 2428–2438 (2010)

    Article  Google Scholar 

  11. Peumans, P.; Bulovic, V.; Forrest, S.R.: Efficient, high-band width organic multilayer photodetectors. Appl. Phys. Lett. 76, 3855 (2000)

    Article  Google Scholar 

  12. Lee, W.; Shin, S.; Han, S.H.; Cho, B.W.: Manipulating interfaces in a hybrid solar cell by in situ photosensitizer polymerization and sequential hydrophilicity/hydrophobicity control for enhanced conversion efficiency. Appl. Phys. Lett. 92, 193307 (2008)

    Article  Google Scholar 

  13. Dias, H.V.R.; Fianchini, M.; Rajapakse, R.M.G.: Greener method for high-quality polypyrrole. Polymer 47, 7349–7354 (2006)

    Article  Google Scholar 

  14. Toshima, N.; Hara, S.: Direct synthesis of conducting polymers from simple monomers. Prog. Polym. Sci. 20, 155–183 (1995)

    Article  Google Scholar 

  15. Toshima, N.; Ihata, O.: Catalytic synthesis of conductive polypyrrole using iron(III) catalyst and molecular oxygen. Synth. Met. 79, 165–172 (1996)

    Article  Google Scholar 

  16. Pina, C.D.; Falletta, E.; Rossi, M.: Conductive materials by metal catalyzed polymerization. Catal. Today 160, 11–27 (2011)

    Article  Google Scholar 

  17. Smirnova, E.A.; Karushev, M.P.; Timonov, A.M.; Alekseeva, E.V.; Levin, O.V.; Malev, V.V.: New functional materials based on conductive polymer-metal complexes modified with metallic nano electrodes. Rus. Chem. Bull. 64, 1919–1925 (2015)

    Article  Google Scholar 

  18. Kurioka, H.; Komatsu, I.; Uyama, H.; Kobayashi, S.: Enzymatic oxidative polymerization of alkylphenols. Macromol. Rapid Commun. 15, 507–510 (1994)

    Article  Google Scholar 

  19. Oguchi, T.; Tawaki, H.; Uyama, S.; Kobayashi, S.: Soluble polyphenol. Macromol. Rapid Commun. 20, 401–403 (1999)

    Article  Google Scholar 

  20. Smejkalova, D.; Piccolo, A.: Rates of oxidative coupling of humic phenolic monomers catalyzed by a biomimetic iron-porphyrin. Environ. Sci. Technol. 40, 1644–1649 (2006)

    Article  Google Scholar 

  21. Tonami, H.; Uyama, H.; Kobayashi, S.: Chemoselective Oxidative Polymerization of \(m\)-ethynylphenol by peroxidase catalyst to a new reactive polyphenol. Biomacromolecules 1, 149–151 (2000)

    Article  Google Scholar 

  22. Higashimura, H.; Kubota, M.; Shiga, A.; Fujisawa, K.; Moro-oka, Y.; Uyama, H.; Kobayashi, S.: “Radical-controlled” oxidative polymerization of 4-phenoxyphenol by a tyrosinase model complex catalyst to poly (1,4-phenylene oxide). Macromolecules 33, 1986–1995 (2000)

    Article  Google Scholar 

  23. Shibasaki, Y.; Suzuki, Y.; Ueda, M.: Copper-catalyzed regio-controlled oxidative coupling polymerization of 2,5-dimethylphenol. Macromolecules 40, 5322–5325 (2007)

    Article  Google Scholar 

  24. Kobayashi, S.; Higashimura, H.: Oxidative polymerization of phenols revisited. Prog. Polym. Sci. 28, 1015–1048 (2003)

    Article  Google Scholar 

  25. Gupta, S.; van Dijk, J.A.P.P.; Gamez, P.; Challa, G.; Reedijk, J.: Mechanistic studies for the polymerization of 2,6-dimethylphenol to poly (2,6-dimethyl-1,4-phenylene ether): LC-MS analyses showing rearrangement and redistribution products. Appl. Catal. A Gen. 319, 163–170 (2007)

    Article  Google Scholar 

  26. Bilici, A.; Doğan, F.; Kaya, İ.: Catalytic oxidation of 2,7-Dihydroxynaphthalene. Ind. Eng. Chem. Res. 53, 104–109 (2014)

    Article  Google Scholar 

  27. Sultanov, Y.M.; Wöhrle, D.; Efendiev, A.A.: Metal-polymer complex catalysts on the base of polyethyleneimine for oxidation of sulfides. J. Mol. Catal. A Chem. 258, 77–82 (2006)

    Article  Google Scholar 

  28. Mart, H.: Oxidative polycondensation reaction. Des. Monomers Polym. 9, 551–555 (2006)

    Article  Google Scholar 

  29. Kaya, İ.; Emdi, D.; Saçak, M.: Synthesis, characterization and antimicrobial properties of oligomer and monomer/oligomer-metal complexes of 2-[(pyridine-3-yl-methylene) amino]phenol. J. Inorg. Organomet. Polym. Mater. 19, 286–297 (2009)

    Article  Google Scholar 

  30. Kolcu, F.; Kaya, İ.: Synthesis and characterization of conjugated polyphenols derived from azomethine formation containing terephtaldehyde via oxidative polycondensation. J. Macromol. Sci. Part A Pure Appl. Chem. 53, 438–451 (2016)

  31. Bilici, A.; Kaya, İ.; Senol, D.: Phenol side-groups-containing fluorene polymer synthesized by catalytic oxidative Polymerization. Polym. Adv. Technol. 22, 1953–1958 (2011)

    Article  Google Scholar 

  32. Bilici, A.; Kaya, İ.; Saçak, M.: Oxidative polymerization of \(\text{N }_{2}\text{O }_{2}\) type Schiff base monomer and its metal complexes: Synthesis and thermal, optical and electrochemical properties. J. Inorg. Organomet. Polym. Mater. 20, 124–133 (2010)

  33. Şenol, D.; Kaya, İ.: Synthesis and characterization of aromatic compounds containing imine and amine groups via oxidative polycondensation. Des. Monomers Polym. 17, 557–575 (2014)

    Article  Google Scholar 

  34. Çulhaoğlu, S.; Kaya, İ.: Synthesis, characterization, thermal stability and conductivity of new Schiff base polymer containing sulfur and oxygen bridges. Polym. Korea. 39, 225–234 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmet Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenol, D., Kaya, İ. Synthesis and Characterizations of Poly(phenoxy-Imine)s via Catalyzed Oxidative Polymerization by Polymer–Metal Complex. Arab J Sci Eng 42, 2381–2396 (2017). https://doi.org/10.1007/s13369-016-2390-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2390-1

Keywords

Navigation