Skip to main content

Advertisement

Log in

Shape Optimization of Trapezoidal Labyrinth Weirs Using Genetic Algorithm

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper describes a methodology for shape optimization of trapezoidal labyrinth weirs. The objective function is the volume of the weir. Different parameters of the weir are introduced as design variables including the total width of weir, width of upstream apex and actual length of side leg. Sensitivity analysis revealed that three design variables of weir width in one cycle, weir leg and number of cycles are the main parameters affecting weir optimization solution. The constraint conditions are the weir geometric shape and its different ratios. Genetic algorithm is applied to perform optimization process. The proposed method is applied successfully to Ute Dam labyrinth weir, and the results are compared with the real one. The results indicated that the volume of the trapezoidal labyrinth weir is reduced by an average of 21% which is obtained per 14 cycle numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crookston, B.M.; Tullis, B.P.: Labyrinth weirs: nappe interference and local submergence. J. Irrig. Drain. Eng. 138(8), 757–765 (2012)

    Article  Google Scholar 

  2. Crookston, B.; Tullis, B.: Hydraulic design and analysis of labyrinth weirs. I: discharge relationships. J. Irrig. Drain. Eng. 139(5), 363–370 (2013)

    Article  Google Scholar 

  3. Khode, B.V.; Tembhurkar, A.R.: Evaluation and analysis of crest coefficient for labyrinth weir. World Appl. Sci. J. 11(7), 835–839 (2010)

    Google Scholar 

  4. Darvas, L.A.: Discussion of performance and design of labyrinth weirs. J. Hydraul. Div. 97(8), 1246–1251 (1971)

    Google Scholar 

  5. Hosseini, K.; Nodoushan, J.H.; Barati, R.; Shahheydari, H.: Optimal design of labyrinth spillways using meta-heuristic algorithms. KSCE J. Civil Eng. 20(1), 468–477 (2016)

    Article  Google Scholar 

  6. Ghare, A.D.; Mhaisalkar, V.A.; Porey, P.D.: An approach to optimal design of trapezoidal labyrinth weirs. World Appl. Sci. J. 3(6), 934–938 (2008)

    Google Scholar 

  7. Falvay, H.: Hydraulic Design of Labyrinth Weirs. ASCE Press Pub, Virginia (2003)

    Google Scholar 

  8. Coleman, H.W.; Wei, C.Y.; Lindell, J.E.: Hydraulic Design of Spillways. Hydraulic Design Handbook. McGraw-Hill, Harza Engineering Company, Chicago (2004)

    Google Scholar 

  9. Aydin, M.C.: CFD simulation of free-surface flow over triangular labyrinth side weir. Adv. Eng. Softw. 45(1), 159–166 (2012)

    Article  Google Scholar 

  10. Savage, B.M.; Brenchley, S.: Fish passage using broadcrested labyrinth weirs for low-head dams. Int. J. River Basin Manag. 11(3), 277–286 (2013)

    Article  Google Scholar 

  11. Emiroglu, M.E.; Cihan Aydin, M.; Kaya, N.: Discharge characteristics of a trapezoidal labyrinth side weir with one and two cycles in subcritical flow. J. Irrig. Drain. Eng. doi:10.1061/(ASCE)IR.1943-4774.0000709 (2014)

  12. Seamons, T.R.: Labyrinth weirs: a look into geometric variation and its effect on efficiency and design method predictions. M.Sc. Thesis, Utah State University (2014)

  13. Emiroglu, M.E.; Kisi, O.; Bilhan, O.: Predicting discharge capacity of triangular labyrinth side weir located on a straight channel by using an adaptive neuro-fuzzy technique. Adv. Eng. Softw. 41(2), 154–160 (2010)

    Article  MATH  Google Scholar 

  14. Bilhan, O.; Emiroglu, M.E.; Kisi, O.: Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels. Adv. Eng. Softw. 42(4), 208–214 (2011)

    Article  MATH  Google Scholar 

  15. Emiroglu, M.E.; Kisi, O.: Prediction of discharge coefficient for trapezoidal labyrinth side weir using a neuro-fuzzy approach. Water Resour. Manag. 27(5), 1473–1488 (2013)

    Article  Google Scholar 

  16. Pourbakhshian, S.; Ghaemain, M.: Shape optimization of arch dams using sensitivity analysis. KSCE J. Civil Eng. 20(5), 1966–1976 (2016)

    Article  Google Scholar 

  17. Izadbakhsh, M.A.; Jahromi, H.M.; Shafai Bajestan, M.; Khosrojerdi, A.: Evolution of hydraulic efficiency of the trapezoidal labyrinth weirs. J Ecol. Environ. Conserv. 17(2), 227–233 (2011)

    Google Scholar 

  18. Lovbjerg M.: Improving particle swarm optimization by hybridization of stochastic search heuristics and self-organized criticality. Master’s Thesis, Aarhus Universitet, Denmark (2002)

  19. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  20. Al-Tabtabai, H.; Alex, P.A.: Using genetic algorithms to solve optimization problems in construction. Eng. Constr. Archit. Manag. 6(2), 121–132 (1999)

    Article  Google Scholar 

  21. Hegazy, T.: Optimization of construction time-cost trade-off analysis using genetic algorithms. Can. J. Civil Eng. 26(6), 685–697 (1999)

    Article  Google Scholar 

  22. Grierson, D.E.; Khajehpour, S.: Method for conceptual design applied to office buildings. J. Comput. Civil Eng. 16(2), 83–103 (2002)

    Article  Google Scholar 

  23. Joglekar, A.; Tungare, M.: Genetic algorithms and their use in the design of evolvable hardware. http://www.manastungare.com/. Accessed 20 May 2004

  24. Mera, N.S.; Elliott, L.; Ingham, D.B.: A real coded genetic algorithm approach for detection of subsurface isotropic and anisotropic inclusions. Inverse Probl. Eng. 11(2), 157–173 (2003)

    Article  Google Scholar 

  25. Haciogluy, A.; Ozkol, I.: Inverse airfoil design by using an accelerated genetic algorithm via distribution strategies. Inverse Probl. Sci. Eng. 13(6), 563–579 (2005)

    Article  MATH  Google Scholar 

  26. Khan, W.A.; Kadri, M.B.; Ali, Q.: Optimization of microchannel heat sinks using genetic algorithm. Heat Transf. Eng. 34(4), 279–287 (2013)

    Article  Google Scholar 

  27. Baghlani, A.H.; Sattari, M.; Makiabadi, M.H.: Application of genetic programming in shape optimization of concrete gravity dams by metaheuristics. Cogent Eng. 1, 1–18 (2014)

    Article  Google Scholar 

  28. Tullis, J.P.; Amanian, N.; Waldron, D.: Design of labyrinth spillways. J. Hydraul. Eng. 121(3), 247–255 (1995)

    Article  Google Scholar 

  29. Willmore, C.: Hydraulic characteristics of labyrinth weirs. M.S. Rep., Utah State Univ., Logan, UT (2004)

  30. Taylor, G.: The performance of labyrinth weirs. Ph.D. thesis, Univ. of Nottingham, Nottingham, England (1968)

  31. Lux III, F.; Hinchliff, D.: Design and construction of labyrinth spillways. 15th Congress ICOLD, 4(Q59-R15), ICOLD, Paris, pp. 249–274 (1985)

  32. Lux III, F.: Design and application of labyrinth weirs. In: Alberson, M., Kia, R. (eds.) Design of Hydraulic Structures, vol. 89, pp. 205–215. Balkema, Rotterdam (1989)

    Google Scholar 

  33. Crookston, B.M.: Labyrinth weirs. Ph.D. Thesis, Utah State University (2010)

  34. Haghighi, A.; Bakhshipour, A.E.: Optimization of sewer networks using an adaptive genetic algorithm. Water Resour. Manag. 26, 3441–3456 (2012)

    Article  Google Scholar 

  35. Houston, K.: Hydraulic model study of Ute Dam labyrinth spillway. Report No. GR-82-7, US Bureau of Reclamation, Denver, Colo., USA (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazila Kardan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardan, N., Hassanzadeh, Y. & Shakooei Bonab, B. Shape Optimization of Trapezoidal Labyrinth Weirs Using Genetic Algorithm. Arab J Sci Eng 42, 1219–1229 (2017). https://doi.org/10.1007/s13369-016-2355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2355-4

Keywords

Navigation