Skip to main content
Log in

Application of Electric Resistance Heating Method on Titanium Hot Forming at Industrial Scale

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, hot forming of DIN WL 3.7024 commercially pure titanium with a sheet thickness of 0.6 mm was performed by electric resistance heating. The sheet materials were heated at 600, 650, and 680 °C and then hot formed with an industrial press. Grain size measurement and XRD analysis were performed for each forming temperature in order to investigate microstructure and phase changes. Results indicate that no microstructural changes have occurred at the mentioned temperature range. It was confirmed that heat treatment before deformation did not contribute any noticeable phase change. However, minor grain growth and traces of titanium oxides were observed. Electrical resistance heating method was found to be applicable for industrial size part production with effective elimination of springback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.titanium.com/titanium/aerospac.cfm. Accessed 12 Sept 2015

  2. Santos D.R.D., Henriques V.A.R., Cairo C.A.A., Pereira M.D.S.: Production of a low young modulus titanium alloy by powder metallurgy. Mater. Res. 8, 439–442 (2005)

    Google Scholar 

  3. Ozturk F., Ece R.E., Polat N., Koksal A.: Effect of warm temperature on springback compensation of titanium sheet. Mater. Manuf. Process. 25, 1021–1024 (2010)

    Article  Google Scholar 

  4. Cornette, D.; Hourman, T.; Hudin, O.; Laurent, J.; Reynaert, A.: High strength steels for automotive safety parts. SAE Technical Paper (2001)

  5. Garcia Aranda L., Chastel Y., Fernández Pascual J., Dal Negro T.: Experiments and simulation of hot stamping of quenchable steels. Adv. Technol. Plast. 2, 1135–1140 (2002)

    Google Scholar 

  6. Groche P., Huber R., Dörr J., Schmoeckel D.: Hydromechanical deep-drawing of aluminium-alloys at elevated temperatures. CIRP Ann. Manuf. Technol. 51, 215–218 (2002)

    Article  Google Scholar 

  7. Jacobson, M.: Body construction techniques. In: Automotive Engineers, vol. 42, pp . 42–52 (1984)

  8. Kolleck, R.; Steinhoefer, D.; Feindt, J.; Bruneau, P.; Heller, T.; Lenze, F.: Manufacturing method for safety and structural body parts for lightweight body design. In: Proceedings, IDDRG, Sindelfingen, pp. 167–173 (2004)

  9. Schiessl, G.; Possehn, T.; Heller, T.; Sikora, S.: Manufacturing a roof frame from ultrahigh-strength steel materials by hot stamping. In: Proceedings, IDDRG, pp. 158–166 (2004)

  10. Siegert K., Jäger S., Vulcan M.: Pneumatic bulging of magnesium AZ 31 sheet metals at elevated temperatures. CIRP Ann. Manuf. Technol. 52, 241–244 (2003)

    Article  Google Scholar 

  11. Vollertsen F., Lange K., Lange K.: Enhancement of drawability by local heat treatment. CIRP Ann. Manuf. Technol. 47, 181–184 (1998)

    Article  Google Scholar 

  12. Yanagimoto J., Oyamada K.: Springback of high-strength steel after hot and warm sheet formings. CIRP Ann. Manuf. Technol. 49, 209–212 (2000)

    Article  Google Scholar 

  13. Yanagimoto J., Oyamada K.: Mechanism of springback-free bending of high-strength steel sheets under warm forming conditions. CIRP Ann. Manuf. Technol. 56, 265–268 (2007)

    Article  Google Scholar 

  14. Beal, J.D.; Boyer, R.; Sanders, D.: Forming of Titanium and Titanium Alloys, Metalworking: Sheet Forming. ASM Handbook, vol. 14B, pp. 656–669. ASM International, Ohio (2006)

  15. Ozturk F., Ece R.E., Polat N., Koksal A., Evis Z., Polat A.: Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process. Mater. Sci. Eng. A. 578, 207–214 (2013)

    Article  Google Scholar 

  16. Chen F.-K., Chiu K.-H.: Stamping formability of pure titanium sheets. J. Materim Process. Technol. 170, 181–186 (2005)

    Article  Google Scholar 

  17. Ozturk F., Ece R.E., Polat N., Koksal A.: Assessment of electrical resistance heating for hot formability of Ti–6Al–4V alloy sheet. Key Eng. Mater. 473, 130–136 (2011)

    Article  Google Scholar 

  18. Maki S., Harada Y., Mori K.-I., Makino H.: Application of resistance heating technique to mushy state forming of aluminium alloy. J. Mater. Process. Technol. 125, 477–482 (2002)

    Article  Google Scholar 

  19. Maki S., Ishiguro M., Mori K.-I., Makino H.: Thermo-mechanical treatment using resistance heating for production of fine grained heat-treatable aluminum alloy sheets. J. Mater. Process. Technol. 177, 444–447 (2006)

    Article  Google Scholar 

  20. Mori K.-I.: Smart hot stamping of ultra-high strength steel parts. Trans. Nonferr. Met. Soc. China 22, s496–s503 (2012)

    Article  Google Scholar 

  21. Mori K., Maeno T., Fuzisaka S.: Punching of ultra-high strength steel sheets using local resistance heating of shearing zone. J. Mater. Process. Technol. 212, 534–540 (2012)

    Article  Google Scholar 

  22. Mori K., Maki S., Tanaka Y.: Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating. CIRP Ann. Manuf. Technol. 54, 209–212 (2005)

    Article  Google Scholar 

  23. Fan G., Gao L., Hussain G., Wu Z.: Electric hot incremental forming: a novel technique. Int. J. Mach. Tools Manuf. 48, 1688–1692 (2008)

    Article  Google Scholar 

  24. Yanagimoto J., Izumi R.: Continuous electric resistance heating—hot forming system for high-alloy metals with poor workability. J. Mater. Process. Technol. 209, 3060–3068 (2009)

    Article  Google Scholar 

  25. Mori K., Maeno T., Fukui Y.: Spline forming of ultra-high strength gear drum using resistance heating of side wall of cup. CIRP Ann. Manuf. Technol. 60, 299–302 (2011)

    Article  Google Scholar 

  26. Tan M.J., Zhu X.J.: Microstructure evolution of CP titanium during high temperature deformation. Arch. Mater. Sci. Eng. 28(1), 5–11 (2007)

    Google Scholar 

  27. Weiss I., Semiatin S.L.: Thermomechanical processing of alpha titanium alloys—an overview. Mater. Sci. Eng. A. 263, 243–256 (1999)

    Article  Google Scholar 

  28. Fan X.G., Yang H., Gao P.F.: Microstructure control in local loading forming of large-scale complex titanium alloy component. Proc. Eng. 81, 522–527 (2014)

    Article  Google Scholar 

  29. Kumar S., Narayanan T.S.N.S., Raman S.G.S., Seshadri S.K.: Thermal oxidation of CP Ti—An electrochemical and structural characterization. Mater. Charact. 61, 589–597 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahrettin Ozturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, F., Ece, R.E., Polat, N. et al. Application of Electric Resistance Heating Method on Titanium Hot Forming at Industrial Scale. Arab J Sci Eng 41, 4441–4448 (2016). https://doi.org/10.1007/s13369-016-2159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2159-6

Keywords

Navigation