Skip to main content

Advertisement

Log in

Kinetic Analysis of Pyrolysis of Waste Polyolefin Mixture

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The waste plastics can be converted into valuable fuels by the process of pyrolysis. To optimize the process of pyrolysis of polymers, the knowledge of thermal degradation kinetics is needed and it is usually studied by thermogravimetry. Thermogravimetric analysis is an excellent tool for studying the kinetics of thermal degradation, since it enables determination of the basic kinetic parameters such as activation energy, reaction order and pre-exponential factor. In this work, kinetic analysis of thermal and catalytic degradation of polyolefin mixture of polypropylene and high-density polyethylene was investigated under non-isothermal conditions at different heating rates: 3–20 K/min. The activation energy was determined applying the model-free methods, proposed by Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose. Results have shown that the average activation energy values determined by both methods are similar. The activation energy for degradation of the polyolefin mixture decreases considerably by adding the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plastic-The facts 2013; An analysis of European plastic latest production, demand and waste data, Plastic Europa (2013)

  2. Standard guide for development of ASTM standards relating to recycling and use of recycled plastics (2000)

  3. Feng, G.: Pyrolysis of Waste Plastics into Fuels. A Thesis, University of Canterbury (2010)

  4. Buğçe, A.: Synthesis of mesoporous catalysts and their performance in pyrolysis of polyethylene, A Thesis, Middle East Technical University (2010)

  5. Marcilla A., Beltra’n M.I., Navarro R.: Evolution of products during the degradation of polyethylene in a batch reactor. J. Anal. Appl. Pyrolysis 86, 14–21 (2009)

    Article  Google Scholar 

  6. Mosio-Mosiewski J., Warzala M., Morawski I., Dobrzanski T.: High-pressure catalytic and thermal cracking of polyethylene. Fuel Process. Technol. 88, 359–364 (2007)

    Article  Google Scholar 

  7. Ademiluyi T., Adebayo T.A.: Fuel gases from pyrolysis of waste polyethylene sachets. J. Appl. Sci. Environ. Manage. 11, 21–26 (2007)

    Google Scholar 

  8. Sarker M., Rashid M.M., Rahman M.S., Molla M.: Fractional distillation process utilized to produce light fractional fuel from low density polyethylene (LDPE) waste plastic. Open Fuels Energy Sci. J. 5, 39–46 (2012)

    Article  Google Scholar 

  9. Berrueco C., Ceamanos J., Esperanza E., Mastral J.F.: Experimental study of co-pyrolysis of polyethylene/sawdust mixtures. Thermal Sci. 8, 65–80 (2004)

    Article  Google Scholar 

  10. Kim J.S.: Pyrolysis of plastic waste using the non-catalytic hamburg-process and the catalytic process using the cycled-spheres-reactor. Environ. Eng. 9, 31–37 (2004)

    Article  Google Scholar 

  11. Sodero S.F., Berruti F., Behie L.A.: Ultrapyrolytic cracking of polyethylene—a high yield recycling method 1996. Chem. Eng. Sci. 51, 2805–2810 (1996)

    Article  Google Scholar 

  12. Serrano D.P., Aguado J., Escola J.M., Garagorri E.: Conversion of low density polyethylene into petrochemical feedstocks using a continuous screw kiln reactor. J. Anal. Appl. Pyrolysis 58–59, 789–801 (2000)

    Google Scholar 

  13. Kumar S., Panda A.K., Singh R.K.: A review on tertiary recycling of high density polyethylene to fuel. Resour. Conserv. Recycl. 55(11), 893–910 (2011)

    Article  Google Scholar 

  14. Li Y.-H., Yen H.Y.: Fluidized bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons. Polymer Degrad. Stab. 89, 101–108 (2005)

    Article  Google Scholar 

  15. Turn S.R.: An Introduction to Combustion: Concepts and Applications. McGraw-Hill, New York (1994)

    Google Scholar 

  16. Park J.W., Oh S.C., Lee H.P., Kim H.T., Kyong O.Yo.: A kinetic analysis of thermal degradation of polymers using a dynamic method. Polymer Degrad. Stabil. 67, 535–540 (2000)

    Article  Google Scholar 

  17. Zelic, J.; Ugrina, L.; Jozic, D.: Application of thermal methods in the chemistry of cement: kinetic analysis of portlandite from non-isothermal thermogravimetric data. In: First International Proficiency Testing Conference. Romania, 11.10-13.10 (2007)

  18. Das, S.: Pyrolysis and catalytic cracking of municipal plastic waste for recovery of gasoline range hydrocarbons. A Thesis, National Institute of Technology, Rourkela, (2007)

  19. Characterization of polymers using TGA, Application note, PerkinElmer, Inc., (2011)

  20. Aigbodion V.S., Hassan S.B., Atuanya C.U.: Kinetics of isothermal degradation studies by thermogravimetric data: effect of orange peels ash on thermal properties of high density polyethylene (HDPE). J. Mater. Environ. Sci. 3, 1027–1036 (2012)

    Google Scholar 

  21. Kayacan I., Doğan Ö.M.: Pyrolysis of low and high density polyethylene. part I: non-isothermal pyrolysis kinetics. Energy Sources A 30, 385–391 (2008)

    Article  Google Scholar 

  22. Kim H.T., Cheon O.S.: Pyrolysis of thermal degradation of waste polypropylene and high - density polyethylene. J. Ind. Eng. Chem. 11, 648–656 (2005)

    Google Scholar 

  23. Araújo, D.; Costa, L.; Geraldo, J.A.; Filho, P.; Embiruçu1, M.; Marcelo, J.B: Kinetics of catalytic degradation of polyethylene over HALMCM-41, 2nd Mercosur Congress on Chemical Engineering, 4th Mercosur Congress on Process Systems Engineering. Brasil, Costa Verde 14.08-18.08. (2005)

  24. Rantucha P., Kačíkováb D., Nagypálb B.: Investigation of activation energy of polypropylene composite thermo-oxidation by model-free methods. Eur. J. Environ. Saf. Sci. 2, 12–18 (2014)

    Google Scholar 

  25. Arkhangel’skii I.V., Dunaev A.V., Makarenko I.V.: Non-Isothermal Kinetic Methods. Workbook and Laboratory Manual, Berlin (2013)

    Google Scholar 

  26. Aboulkas A., El Harfi K.: Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen. Oil Shale 25, 426–443 (2008)

    Article  Google Scholar 

  27. Aboulkas A., El Harfi K., Bouadili A.El, Benchana M., Mokhlisse A., Outzourit A.: Kinetics of co-pyrolysis of tarfaya (morocco) oil shale with high-density polyethylene. Oil Shale 24, 15–33 (2007)

    Google Scholar 

  28. Roy P.K., Surekha P., Rajagopal C., Choudhary V.: Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant. Express Polymer Lett. 1, 208–216 (2007)

    Article  Google Scholar 

  29. Standard Test Method for Decomposition Kinetics by Thermogravimetry ASTM International, PA 19428-2959. United States

  30. Ofoma, I.: Catalytic pyrolysis of polyolefins. A Thesis. Georgia Institute of Technology (2006)

  31. Malek J.: The kinetic-analysis of non-isothermal data. Thermochim. Acta 200, 257–269 (1992)

    Article  Google Scholar 

  32. Jaśkiewicz, M.A.: Production of Liquid Fuels from Recycled Plastics using Acidic HNaY Catalyst. A thesis, Universida de Técnica de Lisboa (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmina Miteva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miteva, K., Slavcho, A. & Bogoeva-Gaceva, G. Kinetic Analysis of Pyrolysis of Waste Polyolefin Mixture. Arab J Sci Eng 41, 2601–2609 (2016). https://doi.org/10.1007/s13369-016-2092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2092-8

Keywords

Navigation