Skip to main content
Log in

The Effects of Precipitate Size on the Hardness and Wear Behaviors of Aged 7075 Aluminum Alloys Produced by Powder Metallurgy Route

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the effects of precipitate size, which occurred on the microstructure by applying T6 heat treatment at different temperatures and different time intervals, were investigated on hardness and wear behaviors of 7075 Aluminum alloys produced by powder metallurgy route. Aging heat treatments were performed at three different temperatures (110–130 °C) and four different times (16–28 h). The results show that MgZn2 precipitates were formed in the microstructure by aging heat treatments and their sizes were changed depending on aging temperature and time. The precipitate size was increased by increasing aging temperature and time. The largest size of the precipitate was measured from SEM images of the samples aged at 130 °C for 24 h. The highest hardness values were measured at 120 °C for 24-h aged samples. The wear test results revealed that the weight loss was increased with increase in sliding distance and the minimum weight loss was observed at 120 °C for 24-h aged samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dursun T., Soutis C.: Recent developments in advanced air craft aluminium alloys. Mater. Des. 56, 862–871 (2014)

    Article  Google Scholar 

  2. Özyürek D., Yılmaz R., Kibar E.: The effect of retrogression parameters in RRA treatment on tensile of 7075 aluminium alloys. J. Fac. Eng. Archit. Gaz. Univ. 27(1), 193–203 (2012)

    Google Scholar 

  3. Fakioglu A., Özyürek D., Yilmaz R.: Effects of different heat treatment conditions on fatigue behavior of AA7075 alloy. High Temp. Mater. Process. 32(4), 345–351 (2012)

    Google Scholar 

  4. Yılmaz R., Özyürek D., Kibar E.: The effect of retrogression parameters on hardness and wear behaviours of 7075 aluminium alloys. J. Fac. Eng. Archit. Gaz. Univ. 27(2), 429–438 (2012)

    Google Scholar 

  5. Kaya H., Uçar M., Cengiz A., Özyürek D., Çalişkan A., Ergül R.E.: The effect of aging on the machinability of AA7075 aluminium alloy. Sci. Res. Essay 7(27), 2424–2430 (2012)

    Google Scholar 

  6. Fakioglu A., Özyürek D.: Effects of Re-aging on the fatigue properties of aluminium alloy AA7075. Mater. Test. 56(7–8), 575–582 (2014)

    Article  Google Scholar 

  7. Rendigs K.H.: Aluminium structure used in aerospace status and prospects. J. Mater. Sci. Forum. 242, 11–24 (1997)

    Article  Google Scholar 

  8. Heinz A., Haszler A., Keidel C., Moldenhauer S., Benedictus R., Miller W.S.: Recent development in aluminium alloys for aerospace application. Mater. Sci. Eng. A 280, 102–107 (2000)

    Article  Google Scholar 

  9. LaDelpha A.D.P., Neubing H., Bishop D.P.: Metallurgical assessment of an emerging Al–Zn–Mg–Cu P/M alloy. Mater. Sci. Eng. A 520, 105–113 (2009)

    Article  Google Scholar 

  10. Du Z.W., Sun Z.M., Shao B.L., Zhouand T.T., Chen C.Q.: Quantitative evaluation of precipitates in an Al–Zn–Mg–Cu alloy after isothermal aging. Mater. Charact. 56, 121–128 (2006)

    Article  Google Scholar 

  11. Enbury J.D., Deschamps A.: The interaction of plasticity and diffusion controlled precipitation reactions. Scr. Mater. 49, 927–932 (2003)

    Article  Google Scholar 

  12. Du Z.W., Zhou T.T., Chen P.C.Q., Liuand Y., Dong B.Z.: Quantitative analysis of precipitation in An Al–Zn–Mg–Cu–Li alloy. Mater. Charact. 55, 72–82 (2005)

    Article  Google Scholar 

  13. Starink M.J., Wang S.C.: A Model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater. 51, 5131–5150 (2003)

    Article  Google Scholar 

  14. Fan X.G., Jıang D.M., Meng Q.C., Zhang B.Y., Wang T.: Evolution of eutectic structures in Al–Zn–Mg–Cu alloys during heat treatment. Trans. Nonferrous Met. Soc. China 16, 577–581 (2006)

    Article  Google Scholar 

  15. Tanner D.A., Robinson J.S.: Effect of precipitation during quenching on the mechanical properties of the aluminium alloy 7010 in the W-temper. J. Mater. Process. Technol. 153(154), 998–1004 (2004)

    Article  Google Scholar 

  16. Chemingui M., Khitouni M., Jozwiak K., Mesmacque G., Kolsi A.: Characterization of the mechanical properties changes in an Al-Zn-Mg alloy after a two-step ageing treatment at 70 °C and 135 °C. Mater. Des. 31, 3134–3139 (2010)

    Article  Google Scholar 

  17. Wei B.C., Chen C.Q., Huang Z., Zhang Y.G.: Aging behavior of Li containing Al–Zn–Mg–Cu alloys. Mater. Sci. Eng. A 280, 161–167 (2000)

    Article  Google Scholar 

  18. Isadere A.D., Aremo B., Adeoye M.O, Olawale O.J, Shittu M.D.: Effect of heat treatment on some mechanical properties of 7075 aluminium alloy. Mater. Res. 16(1), 190–194 (2013)

    Article  Google Scholar 

  19. Campos R.F., Guel I.E., Yoshida M.M., Sanchez R.M., Ramirez J.M.H.: Micro structure and mechanical properties of 7075 aluminum alloy nano structured composites processed by mechanical milling and indirect hot extrusion. Mater. Charact. 63, 39–46 (2012)

    Article  Google Scholar 

  20. Rokni M.R., Hanzaki A.Z., Abedi H.R., Haghdadi H.: Microstructure evolution and mechanical properties of back ward thixo extruded 7075 aluminum alloy. Mater. Des. 36, 557–563 (2012)

    Article  Google Scholar 

  21. Guo H.M., Yang X.J., Wang J.X., Hu B., Zhu G.L.: Effects of rheo forming on structure and mechanical properties of 7075 wrought aluminium alloy. Trans. Nonferrous Met. Soc. China 20, 355–360 (2010)

    Article  Google Scholar 

  22. Rokni M.R., Hanzaki A.Z., Abedi H.R.: Microstructure evolution and mechanical properties of back extruded 7075 aluminum alloy at elevated temperatures. Mater. Sci. Eng. A 532, 593–600 (2012)

    Article  Google Scholar 

  23. Mahathaninwong N., Plookphol T., Wannasina J., Wisutmethangoon S.: T6 heat treatment of rheo casting 7075 Al alloy. Mater. Sci. Eng. A 532, 91–99 (2012)

    Article  Google Scholar 

  24. German R.M.: Powder Metallurgy and Particulate Materials Processing. Metal Powder Industries Federation, Princeton (2005)

    Google Scholar 

  25. Harding M.D., Donaldson I.W., Hexemer R.L. Jr., Gharghouri M.A., Bishop D.P.: Characterization of the microstructure, mechanical properties, and shot peening response of an industrially processed Al–Zn–Mg–Cu PM alloy. J. Mater. Proces. Technol. 221, 31–39 (2015)

    Article  Google Scholar 

  26. Deuis R.L., Subramanian C., Yellup J.M.: Dry sliding wear of aluminium composites—a review. Compos. Sci. Technol. 57, 415–435 (1997)

    Article  Google Scholar 

  27. Vencl A., Bobic I., Miskovic Z.: Effect of thixo casting and heat treatment on the tribological properties of hypoeutectic Al–Si alloy. Wear 264, 616–623 (2008)

    Article  Google Scholar 

  28. Chen R., Iwabuchi A., Shimizu T.: The effect of a T6 heat treatment on the fretting wear of a SiC particle-reinforced A356 aluminum alloy matrix composite. Wear 238, 110–119 (2000)

    Article  Google Scholar 

  29. Qi W.X., Tu J.P., Liu F., Yang Y.Z., Wang N.Y., Lu H.M., Zhang X.B., Gua S.Y., Liu M.S.: Micro structure and tribological behavior of a peak aged Cu–Cr–Zr alloy. Mater. Sci. Eng. A 343, 89–96 (2003)

    Article  Google Scholar 

  30. Baydoğan M., Cimenoglu H., Kayali E.S.: A study on sliding wear of a 7075 aluminum alloy. Wear 257, 852–861 (2004)

    Article  Google Scholar 

  31. Mindivan H., Kayali E.S., Cimenoglu H.: Tribological behavior of squeeze cast aluminium matrix composites. Wear 265, 645–654 (2008)

    Article  Google Scholar 

  32. Abolhasani A., Hanzaki A.Z., Abedi H.R., Rokni M.R.: The room temperature mechanical properties of hot rolled 7075 aluminum alloy. Mater. Des. 34, 631–636 (2012)

    Article  Google Scholar 

  33. Peng G.S., Chen K.H., Chen S.Y., Fang H.C.: Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al–Zn–Mg–Cu alloy. Trans. Nonferrous Met. Soc. China 22, 803–809 (2012)

    Article  Google Scholar 

  34. Tang J.G., Chen H., Zhang X.M., Liu S.D., Liu W.J., Ouyang H., Li H.P.: Influence of quench-induced precipitation on ageing behavior of Al–Zn–Mg–Cu alloy. Trans. Nonferrous Met. Soc. China 22, 1255–1263 (2012)

    Article  Google Scholar 

  35. Viana F., Pinto A.M.P., Santos H.M.C., Lopes A.B.: Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization. J. Mater. Process. Technol. 92–93, 54–59 (1999)

    Article  Google Scholar 

  36. Campbell C.E., Bendersky L.A., Boettinger W.J., Ivester R.: Microstructural characterization of Al-7075-T651 chips and work pieces produced by-high-speed machining. Mater. Sci. Eng. A 430, 15–26 (2006)

    Article  Google Scholar 

  37. Li Z., Xiong B., Zhang Y., Zhu B., Wang F., Liu H.: Investigation of microstructural evolution and mechanical properties during two-step ageing treatment at 115 and 160 °C in an Al–Zn–Mg–Cu alloy pre-stretched thick plate. Mater. Charact. 59(3), 278–282 (2008)

    Article  Google Scholar 

  38. Wang T., Yin Z.M., Shen K., Li J., Huang J.W.: Single-aging characteristics of 7055 aluminium alloy. Trans. Nonferrous Met. Soc. China 17, 548–552 (2007)

    Article  Google Scholar 

  39. Chen R., Iwabuchi A., Shimizu T.: The effect of a T6 heat treatment on the fretting wear of a sic particle-reinforced A356 aluminum alloy matrix composite. Wear 238, 110–119 (2000)

    Article  Google Scholar 

  40. Reda Y., Karim R.A., Elmahallawi I.: Improvements in mechanical and stres corrosion cracking properties in Al-alloy 7075 via retrogression and reaging. Mater. Sci. Eng. A 485, 468–475 (2008)

    Article  Google Scholar 

  41. Su J.H., Dong Q.M., Liu P., Li H.J., Kang B.X.: Research on aging precipitation in a Cu–Cr–Zr–Mg alloy. Mater. Sci. Eng. A 392, 422–426 (2005)

    Article  Google Scholar 

  42. Saglam I., Özyürek D., Cetinkaya K.: Effect of ageing treatment on wear properties and electrical conductivity of Cu–Cr–Zr alloy. Bull. Mater. Sci. 34(7), 1465–1470 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa Yildirim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, M., Özyürek, D. & Gürü, M. The Effects of Precipitate Size on the Hardness and Wear Behaviors of Aged 7075 Aluminum Alloys Produced by Powder Metallurgy Route. Arab J Sci Eng 41, 4273–4281 (2016). https://doi.org/10.1007/s13369-016-2078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2078-6

Keywords

Navigation