Skip to main content
Log in

Improved Particle Swarm Optimization Based on Natural Flocking Behavior

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nature-based particle swarm optimization (NBPSO) is a technique which improves the performance of particle swarm optimization by using happenings in nature. It utilizes the concept of mature particles, which has the decisive ability to find out the solutions. In this paper, NBPSO is used for solving multidimensional and multimodal problems very easily, which are difficult to solve by other techniques. This new technique is proposed to move the swarm out of the stagnation region, by avoidance of taking reference of the global best particle, which causes the stagnation. The proposed technique also considers the direction of randomly selected two particles, which gives better acceleration to move away from the stagnation region. The algorithm is tested for 300 dimensions on 13 unimodal and multimodal functions from the test suit provided in AGPSO. Performance of NBPSO is compared with AGPSO1, AGPSO2, AGPSO3, IPSO, TACPSO and MPSO. To test the scalability, the proposed method is compared with CCPSO2 upto 1000 dimensions. Results and analysis show that NBPSO is highly competitive algorithms on higher-dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: IEEE, International Conference on Neural Network, Perth, Australia, pp. 1942–1948 (1995)

  2. Li, X.; Deb, K.: Comparing lbest PSO niching algorithms using different position update rules. In: WCCI 2010 IEEE World Congress on Computational Intelligence July, 18–23, CCIB, Barcelona, Spain, pp. 1564–1571 (2010)

  3. Qu B.Y., Suganthan P.N., Das S.: A distance-based locally informed particle swarm model for multi-modal optimization. IEEE Trans. Evol. Comput. 17(3), 387–402 (2013)

    Article  Google Scholar 

  4. Wang H., Moon I., Yang S., Wang D.: A memetic particle swarm optimization algorithm for multimodal optimization problems. Inf. Sci. 197, 38–52 (2012)

    Article  Google Scholar 

  5. Zhan Z.-H., Zhang J., Li Y., Chung H.S.-H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(6), 1362–1381 (2009)

    Article  Google Scholar 

  6. Kiranyaz S., Ince T., Yildirim A., Gabbouj M.: Fractional particle swarm optimization in multidimensional search space. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(2), 298–319 (2010)

    Article  Google Scholar 

  7. Mirjalili S., Lewis A., Sadiq A.S.: Autonomous particles groups for particle swarm optimization. Arab. J. Sci. Eng. 39, 4683–4697 (2014)

    Article  Google Scholar 

  8. Shi, Y.; Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation(CEC 1998), Piscataway, NJ. pp. 69–73 (1998)

  9. van den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. dissertation. Department of Computer Science, University of Pretoria, Pretoria, South Africa (2002)

  10. Wang, H. et al.: Opposition-based particle swarm algorithm with Cauchy mutation. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 4750–4756 (2007)

  11. Yang, S.; Wang, M.; Jiao, L.: A quantum particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), pp. 320–324

  12. Janson S., Middendorf M.: A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans. Syst. Man Cybern. Part B Cybern. 35(6), 1272–1282 (2005)

    Article  Google Scholar 

  13. Evers, G.I.; Ghalia, M.B.: Regrouping particle swarm optimization: a new global optimization algorithm with improved performance consistency across benchmarks. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 3901–3908 (2009)

  14. Bergh F., Engelbrecht A.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  15. Yang Z., Tang K., Yao X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2986–2999 (2008)

    Article  MathSciNet  Google Scholar 

  16. Cui, Z.; Zeng, J.; Yin, Y.: An improved PSO with time-varying accelerator coefficients. In: Eighth International Conference on Intelligent Systems Design and Applications, Kaohsiung, pp 638–643 (2008)

  17. Ziyu, T.; Dingxue, Z.: A modified particle swarm optimization with an adaptive acceleration coefficients. In: Asia-Pacific Conference on Information Processing, Shenzhen, pp. 330–332 (2009)

  18. Bao, G.Q.; Mao, K.F.: Particle swarm optimization algorithm with asymmetric time varying acceleration coefficients. In: IEEE International Conference on Robotics and Biomimetics, Guilin, pp. 2134–2139 (2009)

  19. Dai, Y.; Liu, L.; Li, Y.: An intelligent parameter selection method for particle swarm optimization algorithm. In: Fourth International Joint Conference on Computational Sciences and Optimization, pp. 960–964 (2011)

  20. Clerc M., Kennedy J.: The particle swarm: explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  21. Ray, T.; Yao, X.: A cooperative coevolutionary algorithm with correlation based adaptive variable partitioning. In: Proceedings of IEEE CEC, pp. 983–999 (May 2009)

  22. Zhao, S.; Liang, J.; Suganthan, P.: Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: Proceedings of IEEE CEC, pp. 3845–3852 (2008)

  23. Shen, X.; Chi, Z.; Yang, J.; Chen, C.; Chi, Z.: Particle swarm optimization with dynamic adaptive inertia weight. In: International Conference on Challenges in Environmental Science and Engineering, pp. 287–289 (2010)

  24. Helwig, S.; Juergen, B.; Member, IEEE, Mostaghim, S.: Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans. Evol. Comput. 17(2), 259–271 (2013)

  25. Omidvar, M.N.; Li, X.; Yao, X.: Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: WCCI 2010 IEEE World Congress on Computational Intelligence, July, 18–23, CCIB, Barcelona, Spain, pp. 1762–1769 (2010)

  26. Epitropakis M.G., Plagianakos V.P., Vrahatis M.N.: Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach. Inf. Sci. 216, 50–92 (2012)

    Article  Google Scholar 

  27. Ratnaweera A., Halgamuge S.K., Watson H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

  28. Shi Y., Eberhart R.C.: Empirical study of particle swarm optimization. Proc. IEEE Int. Congr. Evol. Comput. 3, 101–106 (1999)

    Google Scholar 

  29. Bonyadi M.R., Michalewicz Z., Li X.: An analysis of the velocity updating rule of the particle swarm optimization algorithm. J. Heuristics 20(4), 417–452 (2014)

    Article  Google Scholar 

  30. Li X., Yao X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16(2), 210–224 (2012)

    Article  MathSciNet  Google Scholar 

  31. Bonyadi M.R., Michalewicz Z.: A locally convergent rotationally invariant particle swarm optimization algorithm. Swarm Intell 8(3), 159–198 (2014)

    Article  Google Scholar 

  32. Tang, K.; Yao, X.; Suganthan, P.; MacNish, C.; Chen, Y.; Chen, C.; Yang, Z.: Benchmark functions for the CEC’2008 special session and competition on large scale global optimization. Nature Inspired Computation and Application Laboratory, University of Science and Technology of China, Hefei, China, Technical report 2007 [Online]. Available: http://nical.ustc.edu.cn/cec08ss.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra S. Aote.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aote, S.S., Raghuwanshi, M.M. & Malik, L.G. Improved Particle Swarm Optimization Based on Natural Flocking Behavior. Arab J Sci Eng 41, 1067–1076 (2016). https://doi.org/10.1007/s13369-015-1990-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1990-5

Keywords

Navigation