Skip to main content
Log in

Onshore Sandstone Facies Characteristics and Reservoir Quality of Nyalau Formation, Sarawak, East Malaysia: An Analogue to Subsurface Reservoir Quality Evaluation

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Shallow marine sandstones are substantial hydrocarbon reservoirs located around the globe and in Southeast Asia. Understanding the internal characteristics, distribution, geometry and lateral extent of these sandstones are essential parts of successful exploration and production strategy. This study presents the first detailed work on reservoir sandstone facies including textural characteristics of shallow marine sandstones (well-exposed outcrops) of the Nyalau Formation (Oligocene–Middle Miocene), Bintulu area, Sarawak, East Malaysia. This formation is the onshore equivalent of the offshore cycles II and III. We examined five different major types of sandstone facies on the basis of sedimentological characteristics, grain size distribution, porosity (ϕ) and permeability (k). The analyzed sandstone facies are: (1) hummocky cross-stratified sandstones (ϕ = 32.07 %, k = 20.78 md; thickness from 1 to 2 m); (2) herringbone cross-bedded sandstones (ϕ = 31.31 %, k = 7.7 m; thickness from 1 to 10 m); (3) trough cross-bedded sandstones (ϕ = 35.80 %, k = 5.97 md; thickness from 0.5 to 1 m); (4) wavy- to flaser-bedded sandstones (ϕ = 19.84 %, k = 2.31 md; thickness from 0.5 to 3.5 m); and (5) bioturbated sandstones (ϕ = 8.21 %, k = 3.46 md; thickness from 1 to 2 m). By integrating these parameters, we observed that the best reservoir quality sandstones are hummocky cross-stratified sandstone and herringbone cross-bedded sandstone, because they have better porosity–permeability than that of other sandstone facies, despite having similar grain distribution with probability curves having steep trends and almost same grain size, roundness and sorting. Upon comparing the different facies, inferences can be made that porosity–permeability is distributed randomly. We conclude that there exist heterogeneities within different sandstone facies which may apply to the reservoir properties in the subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wright, L.: River deltas. In: Davis, R.A. Jr. (ed.) Coastal sedimentary environments, pp. 5–68. Springer, (1978)

  2. Van Wagoner, J.; Mitchum, R.; Campion, K.; Rahmanian, V.: Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies, pp. 3–55 (1990)

  3. Swift D., Thorne J.: Sedimentation on continental margins, I: a general model for shelf sedimentation. Shelf Sand Sandstone Bodies 14, 3–31 (1991)

    Google Scholar 

  4. Boyd R., Dalrymple R., Zaitlin B.: Classification of clastic coastal depositional environments. Sediment. Geol. 80(3), 139–150 (1992)

    Article  Google Scholar 

  5. Walker, R.G.J.N.P.G.A.o.C.: Facies models : response to sea level change. Geological Association of Canada = Association géologique du Canada, St. John’s, Nfld. (1992)

  6. James, N.P.; Walker, R.G.: Facies models: response to sea level change. Geological Association of Canada, St. John’s, Newfoundland (1992)

  7. Reading, H.; Collinson, Reading, H.; Collinson, J.: Clastic coasts. In: Reading, H. (ed.) Sedimentary environments: processes, facies and stratigraphy, pp. 170–171 (1996)

  8. Harris P., Heap A., Bryce S., Porter-Smith R., Ryan D., Heggie D.: Classification of Australian clastic coastal depositional environments based upon a quantitative analysis of wave, tidal, and river power. J. Sediment. Res. 72(6), 858–870 (2002)

    Article  Google Scholar 

  9. Harris P.T., Heap A.D.: Environmental management of clastic coastal depositional environments: inferences from an Australian geomorphic database. Ocean Coast. Manag. 46(5), 457–478 (2003)

    Article  Google Scholar 

  10. Molenaar N., Vande Bilt G., Van den Hoek Ostende E., Nio S.: Early diagenetic alteration of shallow-marine mixed sandstones: an example from the Lower Eocene Roda Sandstone Member, Tremp-Graus Basin, Spain. Sediment. Geol. 55(3), 295–318 (1988)

    Article  Google Scholar 

  11. Manzocchi T., Carter J.N., Skorstad A., Fjellvoll B., Stephen K.D., Howell J., Matthews J.D., Walsh J.J., Nepveu M., Bos C.: Sensitivity of the impact of geological uncertainty on production from faulted and unfaulted shallow-marine oil reservoirs: objectives and methods. Pet. Geosci. 14(1), 3–15 (2008)

    Article  Google Scholar 

  12. Howell J.A., Skorstad A., MacDonald A., Fordham A., Flint S., Fjellvoll B., Manzocchi T.: Sedimentological parameterization of shallow-marine reservoirs. Pet. Geosci. 14(1), 17–34 (2008)

    Article  Google Scholar 

  13. Galloway, W.E.: Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems, pp. 87–98 (1975)

  14. Geehan G., Underwood J.: The use of length distributions in geological modelling. Geol. Model. Hydrocarb. Reserv. Outcrop Analog. 15, 205–212 (1993)

    Google Scholar 

  15. Martinius A., Nieuwenhuijs R.: Geological description of flow units in channel sandstones in a fluvial reservoir analogue (Loranca Basin, Spain). Pet. Geosci. 1(3), 237–252 (1995)

    Article  Google Scholar 

  16. Hori K., Saito Y., Zhao Q., Wang P.: Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China. Sediment. Geol. 146(3), 249–264 (2002)

    Article  Google Scholar 

  17. Jackson M.D., Muggeridge A.H., Yoshida S., Johnson H.D.: Upscaling permeability measurements within complex heterolithic tidal sandstones. Math. Geol. 35(5), 499–520 (2003)

    Article  Google Scholar 

  18. Jackson M.D., Yoshida S., Muggeridge A.H., Johnson H.D.: Three-dimensional reservoir characterization and flow simulation of heterolithic tidal sandstones. AAPG Bull. 89(4), 507–528 (2005)

    Article  Google Scholar 

  19. Howell, J.: Sedimentary environments: shoreline and shoreface deposits. In: Plimer, R.C.S.R.M.C.R. (ed.) Encyclopedia of geology, pp. 570–579. Elsevier, Oxford (2005)

  20. Howell J., Vassel Å., Aune T.: Modelling of dipping clinoform barriers within deltaic outcrop analogues from the Cretaceous Western Interior Basin, USA. Geol. Soc. Lond. Spec. Publ. 309(1), 99–121 (2008)

    Article  Google Scholar 

  21. Matthews J.D., Carter J.N., Stephen K.D., Zimmerman R.W., Skorstad A., Manzocchi T., Howell J.A.: Assessing the effect of geological uncertainty on recovery estimates in shallow-marine reservoirs: the application of reservoir engineering to the SAIGUP project. Pet. Geosci. 14(1), 35–44 (2008)

    Article  Google Scholar 

  22. Stephen K.D., Dalrymple M.: Reservoir simulations developed from an outcrop of incised valley fill strata. AAPG Bull. 86(5), 797–822 (2002)

    Google Scholar 

  23. Higgs K.E., Arnot M.J., Browne G.H., Kennedy E.M.: Reservoir potential of Late Cretaceous terrestrial to shallow marine sandstones, Taranaki Basin, New Zealand. Mar. Pet. Geol. 27(9), 1849–1871 (2010). doi:10.1016/j.marpetgeo.2010.08.002

    Article  Google Scholar 

  24. Labourdette R.: Stratigraphy and static connectivity of braided fluvial deposits of the lower Escanilla Formation, south central Pyrenees, Spain. AAPG Bull. 95(4), 585–617 (2011)

    Article  Google Scholar 

  25. Liechti, P.; Roe, F.W.; Haile, N.S.: The geology of Sarawak, Brunei and the western part of North Borneo, vol. 1, no. 3. Bulletin of the Geological Survey Department British Territories in Borneo (1960)

  26. Madon M., Kim C., Wong R.: The structure and stratigraphy of deepwater Sarawak, Malaysia: implications for tectonic evolution. J. Asian Earth Sci. 76, 312–333 (2013)

    Article  Google Scholar 

  27. Madon M., Rahman A.H.A.: Penecontemporaneous deformation in the Nyalau Formation (Oligo-Miocene), Central Sarawak. Geol. Soc. Malays., Bull. 53, 67–73 (2007)

    Google Scholar 

  28. Jia T.Y., Rahman A.H.A.: Comparative analysis of facies and reservoir characteristics of Miri Formation (Miri) and Nyalau Formation (Bintulu), Sarawak. Bull. Geol. Soc. Malays. 55, 39–45 (2009)

    Google Scholar 

  29. Rahman, A.H.A.; Menier, D.; Mansor, M.Y.: Sequence stratigraphic modelling and reservoir architecture of the shallow marine successions of Baram field, West Baram Delta, offshore Sarawak, East Malaysia. Mar. Pet. Geol. 58, 687–703 (2014)

  30. Hassan M.H.A., Johnson H.D., Allison P.A., Abdullah W.H.: Sedimentology and stratigraphic development of the upper Nyalau Formation (Early Miocene), Sarawak, Malaysia: a mixed wave- and tide-influenced coastal system. J. Asian Earth Sci. 76(0), 301–311 (2013). doi:10.1016/j.jseaes.2012.12.018

    Article  Google Scholar 

  31. Hasiah A.W.: Oil-generating potential of Tertiary coals and other organic-rich sediments of the Nyalau Formation, onshore Sarawak. J. Asian Earth Sci. 17(1), 255–267 (1999)

    Article  Google Scholar 

  32. Jia, T.Y.; Hadi, R.A.A.: Sedimentary Facies Characteristics and Reservoir Properties of Tertiary Sandstones in Sabah and Sarawak, East Malaysia. In: PGCE 2008. (2008)

  33. Hall, R.; Morley, C.K.: Sundaland basins. In: Continent-ocean interactions within East Asian marginal seas, vol. 149. Geophys. Monogr. Ser., pp. 55–85. AGU, Washington, DC (2004)

  34. Metcalfe I.: Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res. 19(1), 3–21 (2011)

    Article  Google Scholar 

  35. Simons, W.; Socquet, A.; Vigny, C.; Ambrosius, B.; Haji Abu, S.; Promthong, C.; Subarya, C.; Sarsito, D.; Matheussen, S.; Morgan, P.: A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. J. Geophys. Res. Solid Earth (1978–2012) 112(B6), 1–20 (2007)

  36. Hutchison C.S.: Geology of North-West Borneo: Sarawak, Brunei and Sabah. Elsevier, Amsterdam (2005)

    Google Scholar 

  37. Hutchison C.S.: Marginal basin evolution: the southern South China Sea. Mar. Pet. Geol. 21(9), 1129–1148 (2004)

    Article  Google Scholar 

  38. Clements B., Burgess P.M., Hall R., Cottam M.A.: Subsidence and uplift by slab-related mantle dynamics: a driving mechanism for the Late Cretaceous and Cenozoic evolution of continental SE Asia?. Geol. Soc. Lond. Spec. Publ. 355(1), 37–51 (2011)

    Article  Google Scholar 

  39. King, R.C.; Tingay, M.R.; Hillis, R.R.; Morley, C.K.; Clark, J.: Present-day stress orientations and tectonic provinces of the NW Borneo collisional margin. J. Geophys. Res., 115(B10), 1–15 (2010)

  40. Hutchison C.S.: The ‘Rajang accretionary prism’and ‘Lupar Line’problem of Borneo. Geol. Soc. Lond. Spec. Publ. 106(1), 247–261 (1996)

    Article  Google Scholar 

  41. Barckhausen, U.; Roeser, H.A.: Seafloor spreading anomalies in the South China Sea revisited. Cont. Ocean Interact East Asian Marg. Seas 149, 121–125 (2004)

  42. Taylor, B.; Hayes, D.E.: Origin and history of the South China Sea basin. Tecton. Geol. Evol. Southeast Asian Seas Isl.: (Part 2), 27, 23–56 (1983)

  43. Sapin F., Pubellier M., Lahfid A., Janots D., Aubourg C., Ringenbach J.C.: Onshore record of the subduction of a crustal salient: example of the NW Borneo Wedge. Terra Nova 23(4), 232–240 (2011)

    Article  Google Scholar 

  44. Mathew M., Siddiqui N., Menier D.: An evolutionary model of the near-shore Tinjar and Balingian Provinces, Sarawak, Malaysia. Int. J. Pet. Geosci. Eng. 1(2), 81–91 (2014)

    Google Scholar 

  45. Morley C.: A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics 347(4), 189–215 (2002)

    Article  Google Scholar 

  46. Morley C.: Combined escape tectonics and subduction rollback–back arc extension: a model for the evolution of Tertiary rift basins in Thailand, Malaysia and Laos. J. Geol. Soc. 158(3), 461–474 (2001)

    Article  Google Scholar 

  47. Ferrari O., Hochard C., Stampfli G.: An alternative plate tectonic model for the Palaeozoic—Early Mesozoic Palaeotethyan evolution of southeast Asia (Northern Thailand–Burma). Tectonophysics 451(1), 346–365 (2008)

    Article  Google Scholar 

  48. Mathew, M.; Menier, D.; Rahman, A.H.A.; Pubellier, M.; Mansor, Y.; Siddiqui, N.; Parham, P.: Tectonic and eustatic controls on Miocene sedimentation of Nyalau Formation (Sarawak, Borneo). Paper presented at the National Geoscience Conference Kuala Terengganu

  49. Hall R.: Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20(4), 353–431 (2002)

    Article  Google Scholar 

  50. Lee T.-Y., Lawver L.A.: Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251(1), 85–138 (1995)

    Article  Google Scholar 

  51. Longley I.M.: The tectonostratigraphic evolution of SE Asia. Geol. Soc. Lond. Spec. Publ. 126(1), 311–339 (1997)

    Article  MathSciNet  Google Scholar 

  52. Holloway N.: North Palawan block, Philippines—Its relation to Asian mainland and role in evolution of South China Sea. AAPG Bull. 66(9), 1355–1383 (1982)

    Google Scholar 

  53. Sandal S.T.: The geology and hydrocarbon resources of Negara Brunei Darussalam. Syabas, Brunei-Muara (1996)

    Google Scholar 

  54. Mazlan, M.: Plate tectonic elements and evolution of Southeast Asia. In: The Petroleum Geology and Resources of Malaysia. Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, chap. 4, pp. 59–76. ISBN 983-9738-10-0 (1999)

  55. Mazlan M.: Basin types, tectono-stratigraphic provinces and structural styles. In: The Petroleum Geology and Resources of Malaysia. Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, chap. 5, pp. 77–112. ISBN 983-9738-10-0 (1999)

  56. Almond J., Vincent P., Williams L.: The application of detailed reservoir geological studies in the D18 Field, Balingian Province, offshore Sarawak. Geol. Soc. Malays. Bull. 27, 137–160 (1990)

    Google Scholar 

  57. Mat-Zin I., Swarbrick R.: The tectonic evolution and associated sedimentation history of Sarawak Basin, eastern Malaysia: a guide for future hydrocarbon exploration. Geol. Soc. Lond. Spec. Publ. 126(1), 237–245 (1997)

    Article  Google Scholar 

  58. Adams C.G.: The foraminifera and stratigraphy of the Melinau Limestone, Sarawak, and its importance in Tertiary correlation. Q. J. Geol. Soc. 121(1-4), 283–338 (1965)

    Article  Google Scholar 

  59. Folk, R.L.; Ward, W.C.: Brazos River bar: a study in the significance of grain size parameters. J. Sediment. Res. 27(1), 3–26 (1957)

  60. Cheel R.J., Leckie D.A.: 7 Hummocky cross-stratification. Sediment. Rev. 1 31, 103 (2009)

    Google Scholar 

  61. Basilici G., De L., Vieira P.H., Oliveira E.P.: A depositional model for a wave-dominated open-coast tidal flat, based on analyses of the Cambrian–Ordovician Lagarto and Palmares formations, north-eastern Brazil. Sedimentology 59(5), 1613–1639 (2012)

    Article  Google Scholar 

  62. Collins, M.B.; Amos, C.L.; Evans, G.: Observations of Some Sediment-Transport Processes over Intertidal Flats, the Wash, UK. Holocene Marine Sedimentation in the North Sea Basin, pp. 81–98 (1981)

  63. Morad S., Ketzer J., De Ros L.F.: Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology 47(s1), 95–120 (2000)

    Article  Google Scholar 

  64. Ketzer J.M., Morad S., Evans R., Al-Aasm I.: Distribution of diagenetic alterations in fluvial, deltaic, and shallow marine sandstones within a sequence stratigraphic framework: evidence from the Mullaghmore Formation (Carboniferous), NW Ireland. J. Sediment. Res. 72(6), 760–774 (2002)

    Article  Google Scholar 

  65. El-ghali M.A.K., Mansurbeg H., Morad S., Al-Aasm I., Ramseyer K.: Distribution of diagenetic alterations in glaciogenic sandstones within a depositional facies and sequence stratigraphic framework: evidence from the Upper Ordovician of the Murzuq Basin, SW Libya. Sediment. Geol. 190(1), 323–351 (2006)

    Article  Google Scholar 

  66. Schmidt, V.; McDonald, D.A.: The role of secondary porosity in the course of sandstone diagenesis. In: Scholle, P.A., Schluger, P.R. (eds.) Aspects of Diagenesis, vol. 26, pp. 185–207, SEPM Spec. Publication (1979)

  67. Bloch S., Lander R.H., Bonnell L.: Anomalously high porosity and permeability in deeply buried sandstone reservoirs: origin and predictability. AAPG Bull. 86(2), 301–328 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Numair A. Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, N.A., Rahman, A.H.A., Sum, C.W. et al. Onshore Sandstone Facies Characteristics and Reservoir Quality of Nyalau Formation, Sarawak, East Malaysia: An Analogue to Subsurface Reservoir Quality Evaluation. Arab J Sci Eng 41, 267–280 (2016). https://doi.org/10.1007/s13369-015-1787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1787-6

Keywords

Navigation