Skip to main content
Log in

An Approach for Analyzing the Reliability of Industrial System Using Fuzzy Kolmogorov’s Differential Equations

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The main objective of this paper is to present a technique to permit the reliability analyst’s or system manager for increasing the performance of the system. As traditionally, it was assumed that probabilities in Markov chain models are deterministic in nature, but as the system are growing complex and more complex these days, so the reliability data are either insufficient or mixed with uncertainty. Thus to handle these kind of issues, the nth-order fuzzy Kolmogorov’s differential equations are developed by using a fuzzy Markov model of a repairable industrial system from its transition diagram and then evaluate the fuzzy reliability of the system both in transient as well as in steady state using Runge–Kutta method. Sensitivity analysis has been conducted for finding the most critical component of the system by varying the failure and repair rates of the system. Final results are compared with the existing results. To show the application of the proposed method, a case of the thermal power plant, a repairable industrial system, has been taken for evaluating the fuzzy reliability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamyan A., David H.: System failure analysis through counters of Petri net models. Qual. Reliab. Eng. Int. 20(4), 317–335 (2004)

    Article  Google Scholar 

  2. Kumar P., Aggarwal K.K.: Petri net modeling and reliability evaluation of distributed processing systems. Reliab. Eng. System Safety 41(2), 167–176 (1993)

    Article  Google Scholar 

  3. Garg H., Sharma S.P.: Stochastic behavior analysis of industrial systems utilizing uncertain data. ISA Trans. 51(6), 752–762 (2012)

    Article  Google Scholar 

  4. El-Damcese M.A.: Reliability of systems subject to common-cause hazards assumed to obey an exponential power model. Nucl. Eng. Design 167(1), 85–90 (1996)

    Article  Google Scholar 

  5. German R.: Performance Analysis of Communication Systems Modeling with Non-Markovian Stochastic Petri nets. Wiley, New York (2000)

    MATH  Google Scholar 

  6. Aneziris O.N., Papazoglou I.A.: Fast Markovian method for dynamic safety analysis of process plants. J. Loss Prev. Process Ind. 17(1), 1–8 (2004)

    Article  Google Scholar 

  7. Vinayak R., Dharmaraja S.: Semi-Markov modeling approach for deteriorating systems with preventive maintenance. Int. J. Perform. Eng. 8, 515–526 (2012)

    Google Scholar 

  8. Aven T., Kvalϕy J.T.: Implementing the Bayesian paradigm in risk analysis. Reliab. Eng. System Safety 78(2), 195–201 (2002)

    Article  Google Scholar 

  9. Wu H.C.: Fuzzy reliability estimation using Bayesian approach. Comput. Ind. Eng. 46(3), 467–493 (2004)

    Article  Google Scholar 

  10. Huang H.Z., Zuo M.J., Sun Z.Q.: Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets Systems 157(12), 1674–1686 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. El-Damcese M.A.: Reliability for consecutive-k-out-of-n:f systems subject to Markov-dependent components. Int. J. Appl. Math. 17(2), 137–142 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Misra N., Misra A.K., Dhariyal I.D.: Active redundancy allocations in series systems. Probab. Eng. Inf. Sci. 25, 219–235 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garg H., Rani M., Sharma S.P.: An efficient two phase approach for solving reliability–redundancy allocation problem using artificial bee colony technique. Comput. Oper. Res. 40(12), 2961–2969 (2013)

    Article  MathSciNet  Google Scholar 

  14. Kaufmann A., Gupta M.M.: Introduction to Fuzzy Arithmatic: Theory and Applications. Van Nostrand, New York (1985)

    MATH  Google Scholar 

  15. Cai K.Y.: System failure engineering and fuzzy methodology: an introductory overview. Fuzzy Sets Systems 83, 113–133 (1996)

    Article  Google Scholar 

  16. Donighi S.S., Khanmohammadi S.: A fuzzy reliability model for series–parallel systems. J. Ind. Eng. Int. 7(12), 10–18 (2011)

    Google Scholar 

  17. Zadeh L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kaleva O.: Fuzzy differential equations. Fuzzy Sets Systems 24(3), 301–317 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Seikala S.: On the fuzzy intial value problem. Fuzzy Sets Systems 24, 319–330 (1987)

    Article  Google Scholar 

  20. Abbasbandy S., Allahviranloo T.: Numerical solutions of fuzzy differential equations by taylor method. J. Comput. Methods Appl. Math. 2, 113–124 (2002)

    MathSciNet  Google Scholar 

  21. Buckley J.J., Feuring T.: Introduction to fuzzy partial differential equations. Fuzzy Sets Systems 105, 241–248 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Buckley J.J., Feuring T.: Fuzzy differential equations. Fuzzy Sets Systems 110, 43–54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ma M., Friedman M., Kandel A.: Numerical solutions of fuzzy differential equations. Fuzzy Sets Systems 105, 133–138 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Allahviranloo T., Kiani N.A., Motamedi N.: Solving fuzzy differential equatios by differential transformation method. Inform. Sci. 179(7), 956–966 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Allahviranloo T., Salahshour S.: A new approach for solving first order fuzzy differential equation. In: Hullermeier, E., Kruse, R., Hoffmann, F. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications, Communications in Computer and Information Science vol. 81, pp. 522–531. Springer, Berlin (2010)

    Google Scholar 

  26. Kumar A., Lata S.: Reliability evaluation of condensate system using fuzzy Markov model. Annals Fuzzy Math. Inf. 4(2), 281–291 (2012)

    MATH  MathSciNet  Google Scholar 

  27. Chen H., Xu W., Wu Q., Liu Z., Wang S.: Reliability analysis of arch dam subjected to seismic loads. Arab. J. Sci. Eng. 39(11), 7609–7619 (2014)

    Article  Google Scholar 

  28. Abudhagir U.S., Shanmugavel S.: A novel dynamic reliability optimized resource scheduling algorithm for grid computing system. Arab. J. Sci. Eng. 39(10), 7087–7096 (2014)

    Article  Google Scholar 

  29. Abdo M.A.B., Hori M.: Reliability of using 3-D woven polypropylene fiber in strengthening of a large-scale RC structure subjected to seismic loads. Arab. J. Sci. Eng. 37(3), 505–520 (2012)

    Article  Google Scholar 

  30. Khelif R., Chateauneuf A.: Reliability-based replacement of polyethylene gas pipeline networks. Arab. J. Sci. Eng. 39(11), 8175–8185 (2014)

    Article  Google Scholar 

  31. Yusuf I., Hussaini N.: A comparative analysis of three unit redundant systems with three types of failures. Arab. J. Sci. Eng. 39(4), 3337–3349 (2014)

    Article  Google Scholar 

  32. Ram M., Kumar A.: Performance of a structure consisting a 2-out-of-3: F substructure under human failure. Arab. J. Sci. Eng. 39(11), 8383–8394 (2014)

    Article  Google Scholar 

  33. Wu Z., Ming X.G., Song W., Zhu B., Xu Z.: Nuclear product design knowledge system based on FMEA method in new product development. Arab. J. Sci. Eng. 39(3), 2191–2203 (2014)

    Article  Google Scholar 

  34. Vahidi H., Ghazban F., Abdoli M.A., Kazemi V.D., Banaei S.M.A.: Fuzzy analytical hierarchy process disposal method selection for an industrial state; case study charmshahr. Arab. J. Sci. Eng. 39(2), 725–735 (2014)

    Article  Google Scholar 

  35. Su, X.; Ligang Wu, P.S.; Basin, M.V.: Reliable filtering with strict dissipativity for T-S fuzzy time-delay systems. IEEE Trans. Cybern. (2014). doi:10.1109/TCYB.2014.2308983

  36. Lee H.M., Lin L., Su J.S.: A new fuzzy assessment based on interval value to evaluate the aggregative risk rate in software development. Int. J. Innov. Comput. Inform. Control 10(4), 1305–1312 (2014)

    Google Scholar 

  37. Su X., Wu L., Shi P.: Sensor random with random link failures; distributed filtering for T–S fuzzy systems. IEEE Trans. Ind. Inform. 9(3), 1739–1750 (2013)

    Article  Google Scholar 

  38. Garg H., Rani M., Sharma S.P.: An approach for analyzing the reliability of industrial systems using soft computing based technique. Expert Systems Appl. 41(2), 489–501 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H. An Approach for Analyzing the Reliability of Industrial System Using Fuzzy Kolmogorov’s Differential Equations. Arab J Sci Eng 40, 975–987 (2015). https://doi.org/10.1007/s13369-015-1584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1584-2

Keywords

Navigation