Skip to main content
Log in

An Integrated Analysis of Petrophysics, Cross-Plots and Gassmann Fluid Substitution for Characterization of Fimkassar Area, Pakistan: A Case Study

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Reservoir characterization is a process of describing various reservoir properties using all the available data to provide reliable reservoir models for accurate reservoir performance prediction. This process requires the use of proper methods for characterization to avoid many prominent errors in the prediction of reservoir performance. Fluid substitution is an important process which provides a tool for fluid identification and quantification in a reservoir. In the present study, petrophysical, cross-plot and Gassmann fluid substitution analysis is applied for the characterization of reservoir of Fimkassar area, Pakistan. The data used for this purpose consist of suite of wireline logs from two wells and laboratory data showing typical rock properties for water-saturated limestone. Our results show that cross-plot analysis performed in this study can provide a qualitative method for the identification of type (water or hydrocarbons) of fluid present within the reservoir. The results of Gassmann fluid substitution at Sakesar limestone level indicate variation in acoustic properties (velocity and density) at different water saturation levels which can be modeled in terms of synthetic seismograms and may help in determining future optimum well locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamel M.H., Mabrouk W.M.: An equation for estimating water saturation in clean formations utilizing resistivity and sonic logs: theory and application. J. Pet. Sci. Eng. 36(3), 159–168 (2002)

    Article  Google Scholar 

  2. Dandekar A.Y.: Petroleum Reservoir Rock and Fluid Properties. CRC Press, Boca Raton (2013)

    Google Scholar 

  3. Alimoradi A., Moradzadeh A., Bakhtiari M.R.: Methods of water saturation estimation: historical perspective. J. Pet. Gas Eng. 2(3), 45–53 (2011)

    Google Scholar 

  4. Asquith G.B., Krygowski D., Gibson C.R.: Basic Well Log Analysis. American Association of Petroleum Geologists, Tulsa (2004)

    Google Scholar 

  5. Han D.H.: Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51, 2093–2107 (1986)

    Article  Google Scholar 

  6. Zhu, X.; McMechan, G.A.: Direct estimation of the bulk modulus of the frame in fluid saturated elastic medium by Biot theory. In: 60th Annual International Meeting, Society of Exploration Geophysics, Expanded Abstract, pp. 787–790 (1990)

  7. Russell B.R., Hedlin K., Hilterman F.J., Lines L.R.: Fluid-property discrimination with AVO: a Biot-Gassmann perspective. Geophysics 68, 29–39 (2003)

    Article  Google Scholar 

  8. Smith T.M., Sondergeld C.H., Rai C.S.: Gassmann fluid substitutions: a tutorial. Geophysics 68, 430–440 (2003)

    Article  Google Scholar 

  9. Han D.H., Batzle M.L.: Gassmann’s equation and fluid-saturation effects on seismic velocities. Geophysics 69, 398–405 (2004)

    Article  Google Scholar 

  10. Avseth P., Mukerji T., Mavko G.: Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  11. Kumar, D.: A tutorial on Gassmann fluid substitution: formulation, algorithm and Matlab code. Geohorizons, pp. 4–12 (2006)

  12. Mavko G., Mukerji T., Dvorkin J.: The Rock Physics Handbook, Tools for Seismic Analysis in Porous Media. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  13. Gassmann F.: Uber die elastizität poröser medien. Vierteljahrsschriftder Naturforschenden Gesellschaft in Zürich 96, 1–23 (1951)

    MathSciNet  Google Scholar 

  14. Artola F.A., Alvarado V.: Sensitivity analysis of Gassmann’s fluid substitution equations: some implications in feasibility studies of time-lapse seismic reservoir monitoring. J. Appl. Geophys. 59(1), 47–62 (2006)

    Article  Google Scholar 

  15. Nguyen P.K., Nam M.J.: A review on methods for constructing rock physics model of saturated reservoir rock for time-lapse seismic. Geosyst. Eng. 14(2), 95–107 (2011)

    Article  Google Scholar 

  16. Aamir, M.; Siddiqui, M.M.: Interpretation and visualization of thrust sheets in a triangle zone in Eastern Potwar, Pakistan. Lead. Edge 25(1), 24–37 (2006)

  17. Kazmi, A.H.; Rana, R.A.: Tectonic map of Pakistan. Geological Survey of Pakistan (1982)

  18. Asquith, G.; Gibson, C.: Basic well log analysis for geologists. AAPG (1982)

  19. Bateman R.M.: Open-Hole Log Analysis and Formation Evaluation. IHRDC Publishers, Boston (1985)

    Google Scholar 

  20. Schlumberger: Log Interpretation Principles/Applications. Schlumberger Educational Services (1991)

  21. Rider, M.H.: The Petrophysical Interpretation of Well Logs. Rider-French Consulting Ltd., pp. 42–66 (2002)

  22. Kuster G.T., Toksoz M.N.: Velocity and attenuation of seismic waves in two-phase media: Part 1. Theoretical formulations. Geophysics 39, 587–606 (1974)

    Article  Google Scholar 

  23. Dvorkin J., Nur A., Yin H.: Effective properties of cemented granular materials. Mech. Mater. 18, 351–366 (1994)

    Article  Google Scholar 

  24. Dvorkin J., Nur A.: Elasticity of high-porosity sandstones: theory for two North Sea datasets. Geophysics 61, 1363–1370 (1996)

    Article  Google Scholar 

  25. Dvorkin J., Moos D., Packwood J., Nur A.: Identifying patchy saturation from well logs. Geophysics 64, 1756–1759 (1999)

    Article  Google Scholar 

  26. Avseth P., Mukerji T., Jorstad A., Mavko G., Veggeland T.: Seismic reservoir mapping from 3-D AVO in a North Sea turbidite system. Geophysics 66, 1157–1176 (2001)

    Article  Google Scholar 

  27. Misaghi A., Negahban S., Landrø M., Javaherian A.: A comparison of rock physics models for fluid substitution in carbonate rocks. Explor. Geophys. 41, 146–154 (2010)

    Article  Google Scholar 

  28. Berryman J., Berge P., Bonner B.: Estimating rock porosity and fluid saturation using only seismic velocities. Geophysics 67, 391–404 (2002)

    Article  Google Scholar 

  29. Pickett G.R.: Acoustic character logs and their application in formation evaluation. J. Pet. Technol. 15, 650–667 (1963)

    Article  Google Scholar 

  30. Wood A.W.: A Textbook of Sound. The Macmillan Co., New York (1955)

    Google Scholar 

  31. Batzle M.L., Wang Z.: Seismic properties of pore fluids. Geophysics 64, 1396–1408 (1992)

    Article  Google Scholar 

  32. Lucet, N.: Vitesse et Attenuation des Ondes E’lastiques Soniques et Ultrasoniques dans les Roches sous Pression de Confinement. Ph.D. dissertation, University of Paris (1989)

  33. Cadoret, T.: Effet de la Saturation Eau/Gaz sur les Proprie’te’s Acoustiques des Roches. Ph.D. dissertation, University of Paris, VII (1993)

  34. Yale, D.P.; Jameison, W.H.: Static and dynamic rock mechanical properties in the Hugoton and Panoma fields. Kansas Society of Petroleum Engineers, Paper 27939, Society of Petroleum Engineers Mid-Continent Gas Symposium, Amarillo, TX, May (1994)

  35. Gue’guen Y., Palciauskas V.: Introduction to the Physics of Rocks. Princeton University Press, Princeton (1994)

    Google Scholar 

  36. Wang Z.: Fundamentals of seismic rock physics. Geophysics 66, 398–412 (2001)

    Article  Google Scholar 

  37. Adam L., Batzle M.: Elastic properties of carbonates from laboratory measurements at seismic and ultrasonic frequencies. Lead. Edge 27, 1026–1032 (2008)

    Article  Google Scholar 

  38. Baechle G.T., Weger R.J., Eberli G.P., Massaferro J.L., Sun Y.F.: Changes of shear moduli in carbonate rocks: implications for Gassmann applicability. Lead. Edge 24, 507–510 (2005)

    Article  Google Scholar 

  39. Wyllie M.R.J., Gardner G.H.F., Gregory A.R.: Addendum to ‘Studies of elastic wave attenuation in porous media’. Geophysics 28, 1074 (1963)

    Article  Google Scholar 

  40. Berryman J.G.: Origin of Gassmann’s equations. Geophysics 64, 1627–1629 (1999)

    Article  Google Scholar 

  41. Japsen, P.; Høier, C.; Rasmussen, K.B.; Fabricius, I.L.; Mavko, G.; Pedersen, J.M.: Effect of fluid substitution on ultrasonic velocities in chalk plugs, South Arne field, North Sea. In: 72nd SEG Annual Meeting, pp. 1181–1184 (2002)

  42. Adam L., Batzle M., Brevik I.: Gassmann’s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies. Geophysics 71, F173–F183 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Kashif, M., Hussain, M. et al. An Integrated Analysis of Petrophysics, Cross-Plots and Gassmann Fluid Substitution for Characterization of Fimkassar Area, Pakistan: A Case Study. Arab J Sci Eng 40, 181–193 (2015). https://doi.org/10.1007/s13369-014-1500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1500-1

Keywords

Navigation